首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
对中国石化安庆分公司(安庆石化)汽油调合组分油进行调合实验,建立了修正的调合辛烷值模型预测汽油的研究法辛烷值,利用基于LM改进的信赖域方法进行了模型参数非线型回归。选取安庆石化实际生产数据验证模型准确性,比较了线性模型、调合辛烷值模型、改进调合辛烷值模型的预测效果。通过对比3种模型的预测结果,发现3种模型中改进调合辛烷值模型具有较好的预测效果,平均绝对误差0.49,平均相对误差0.5%,残差均方和是0.74,模型的R2是1.08。  相似文献   

2.
建立了一种基于Ghosh RON模型的改进了分子组成的预测汽油辛烷值的模型,能够通过调合组分分子组成和调合比例预测调合汽油产品的研究法辛烷值.该改进模型以汽油馏分的488种烃分子及含氧化合物为基础,并综合考虑了总芳烃与总烷烃、总烯烃、总环烷烃、含氧化合物4类组分之间的相互作用对辛烷值的影响.采用改进模型对直馏石脑油、重...  相似文献   

3.
汽油辛烷值智能调合系统   总被引:1,自引:0,他引:1  
采取一种能够在线学习、不断提高、建立一系列模型的策略,提出了一种具有学习功能的汽油辛烷值智能调合系统。该系统可以根据成品汽油辛烷值指标、生产成本和市场价格等因素提供一个较好的油品调合调度方案。实际应用结果表明,利用参数学习的方法计算调合汽油辛烷值是可行的。  相似文献   

4.
针对即将推行的国Ⅵ车用汽油标准被控属性更多、更严、调合效率要求更高等特点,开发了一种可同时调合多种牌号汽油的双调合头调合工艺和协调优化算法。建立了汽油辛烷值、蒸气压、密度、馏程和含量属性等软测量模型,并对辛烷值模型计算过程和馏程模型进行了改进,实现调合过程中对汽油12个质量指标的精准测控。考虑实际累积调合过程,将双调合头调合工艺过程中储罐汽油属性合格转化成调合头属性区间合格,利用调合头处优化的属性补偿已调合体积和罐底油的属性偏差。同时,应用一种合理高效的协调优化算法协调公用组分油的上限,解决了双调合头调合工艺中争抢公用组分油流量的问题。仿真结果表明,设计的双调合头累积调合优化技术能很好地满足双调合头汽油调合需求,为面向国Ⅵ标准下汽油调合工艺升级提供技术支持。  相似文献   

5.
采用气相色谱法测定汽油辛烷值,可以用于重整,催化及调合生产过程中的汽油的辛烷值检测。  相似文献   

6.
根据市场需要制定了97、98号高辛烷值清洁汽油企业标准Q/SHGZ01-2000,并通过降低催化重整汽油的苯含量、降低催化裂化汽油的烯烃含量、增产优质汽油调合组分以及优化选择汽油的调合组分和配比,生产出97、98号高辛烷值清洁汽油.  相似文献   

7.
中国石油天然气股份有限公司锦西石化分公司炼油厂将汽油调合由原来的罐-罐调合工艺改为管道在线调合工艺.该项目应用国外公司先进的汽油调合优化控制软件--离线多牌号多周期调合优化软件(MBO)及在线多流路调合优化控制软件(Blend),采用化验室分析数据,并结合该厂汽油调合的现状,对原调合流程进行了改造,增加了在线分析仪、调合头、流量测量仪表和控制阀等,开发出适合锦西石化公司的汽油在线调合系统.该系统投用后,可将产品汽油辛烷值过剩降至0.1~0.2,同时减少了调合泵的动力消耗,提高了储罐的利用率,其直接和间接经济效益显著.  相似文献   

8.
采用近红外光谱技术的偏最小二乘法建立了汽油调合组分和产品汽油(90、93、97号)辛烷值、组成等性质的实验室模型,并用常规方法分析样品验证模型的准确性和稳定性。实验表明,其准确性达到标准方法对测定结果的要求。近红外光谱技术能在5min内快速、准确测定调合组分汽油和成品汽油的辛烷值、芳烃、烯烃、苯等性质。  相似文献   

9.
在线调合系统的项目实施   总被引:3,自引:0,他引:3  
为了保证汽油调合辛烷值的准确性,在减少辛烷值浪费的同时避免因辛烷值低于标准值而造成质量事故.笔者参考国内外汽油在线优化调合的各种技术方案,设计出适合中国国情的汽油在线优化调合控制系统.该系统在中石化天津炼油厂和洛阳炼油厂的实际应用中很好地解决了调合过程的辛烷值控制及优化问题,取得了较好的经济效益.  相似文献   

10.
某炼油厂装置持续处于低负荷运行,使得该厂汽油产品调合成本很高。通过分析汽油产品中烯烃含量和国家标准有一定差距,所以汽油基础油辛烷值提高空间较大,为此可以降低汽油调合成本。通过优化操作、调整催化剂配方等措施将汽油基础油辛烷值由89.5提高到91以上,降低了汽油调合成本,实现了装置高效安全运行。  相似文献   

11.
 汽油调和组分对成品汽油辛烷值的影响效应十分复杂,与加工原油及参与调和的组分种类等密切相关,无法用统一的数学模型来描述。采用回归分析方法,对国内某炼油厂大量汽油调和试验进行了深入研究,得到各种汽油调和组分在参与不同标号的汽油调和时对辛烷值的影响效应,同时,结合对国内外常用辛烷值调和模型结构的分析,选取了适合于该炼油厂采用的汽油调和辛烷值模型。  相似文献   

12.
简述汽油近红外在线自动调合系统在海南炼油化工有限公司投用前后的运行情况,分析系统投用前后的优缺点,着重对投运BRC、 BPC后产生的几个典型的调合偏差进行分析,提出解决问题的对策建议。实践表明,措施落实后,调合偏差明显减少,极大地节约了高辛烷值汽油调合组分,产生了较好的经济效益。  相似文献   

13.
The effect of blending MTBE in the gasoline was evaluated. MTBE effectively boost the octane numbers of gasoline without adversely effecting its other properties. However, MTBE is not as efficient as leadalkyl compounds as far as the specific octane number improvements are concerned. The addition of 5 to 30 volume percent MTBE increases 1.9 to 11.8 RON of a typical gasoline. MTBE addition also extends the volume of gasoline produces for a given crude by adding volume to the gasoline pool. MTBE provides much higher FEON to the gasoline in comparison with other gasoline components. A higher FEON increases the efficiency of the engine. MTBE is not affected by the lead level of the gasoline. For this reason, lost octane in future lead reductions of the gasoline in Saudi Arabia can be made up with MTBE. MTBE addition to the Saudi gasoline increases the RVP but within the specification of the gasoline. MTBE has favorable effect on the distillation characteristics of the gasoline. MTBE addition lowers the distillation temperature which improves driveability and cold engine operation. MTBEgasoline blends were found free of gums and peroxides after long term storage and pose no phase separation problems in the presence of water. MTBE is miscible in gasoline in all proportions and its solubility in water is low.  相似文献   

14.
In this study, the spray auto-ignition properties of binary primary reference fuels (PRFs) of 2,2,4-trimethylpentane and n-heptane with different research octane numbers (RONs) were measured according to the industry standard NB/SH/T 6035 to determine their ignition delay times at various initial temperatures. Furthermore, the auto-ignition properties were investigated after blending the PRFs with various amounts of ethanol. The results revealed a very good correlation between the derived cetane number and the RON for the PRFs in both the presence and absence of ethanol. In addition, a concept of ignition delay sensitivity was developed for ethanol-containing fuels that exhibited a close relationship with the octane sensitivity, which is defined as the RON minus the motor octane number (MON). Finally, the developed method was applied to conveniently estimate the RON and MON values of several ethanol-containing fuels by simply measuring their autoignition properties.  相似文献   

15.
ABSTRACT

The effect of blending MTBE in the gasoline was evaluated. MTBE effectively boost the octane numbers of gasoline without adversely effecting its other properties. However, MTBE is not as efficient as leadalkyl compounds as far as the specific octane number improvements are concerned. The addition of 5 to 30 volume percent MTBE increases 1.9 to 11.8 RON of a typical gasoline. MTBE addition also extends the volume of gasoline produces for a given crude by adding volume to the gasoline pool. MTBE provides much higher FEON to the gasoline in comparison with other gasoline components. A higher FEON increases the efficiency of the engine. MTBE is not affected by the lead level of the gasoline. For this reason, lost octane in future lead reductions of the gasoline in Saudi Arabia can be made up with MTBE. MTBE addition to the Saudi gasoline increases the RVP but within the specification of the gasoline. MTBE has favorable effect on the distillation characteristics of the gasoline. MTBE addition lowers the distillation temperature which improves driveability and cold engine operation. MTBEgasoline blends were found free of gums and peroxides after long term storage and pose no phase separation problems in the presence of water. MTBE is miscible in gasoline in all proportions and its solubility in water is low.  相似文献   

16.
分析了汽油池的主要调合组分以及作为清洁燃料组分的烷基化汽油的单体烃组成特点,探讨了3种汽油调合组分的辛烷值分布规律及对辛烷值贡献较大的单体烃组成,并对汽油调合规律进行了较为深入的分析。结果表明:在相同辛烷值、相同芳烃含量的情况下,可以调合出单体烃组成不同的汽油;在保证相同蒸气压的前提下可以调合出馏程分布不同的汽油。  相似文献   

17.
中国石化大连(抚顺)石油化工研究院开发了以催化裂化柴油为原料生产高辛烷值汽油调合组分新工艺技术(FD2G技术)。针对催化裂化柴油加氢改质产品,通过分析其组分的烃类组成,分别加工利用,对于改善产品结构和提高市场竞争力十分有益。研究结果表明:加工高芳烃催化裂化柴油时,汽油产品芳烃含量高,辛烷值高,其中C6~C8芳烃富集的窄馏分可以作为芳烃抽提装置原料生产化工产品;加工低芳烃含量的催化裂化柴油时,汽油产品中芳烃含量低,辛烷值偏低,可将富集大量环烷烃的窄馏分作为重整装置原料,富含芳烃的窄馏分作为高辛烷值汽油调合组分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号