共查询到19条相似文献,搜索用时 62 毫秒
1.
纳米硫酸钡增强增韧尼龙66 总被引:1,自引:0,他引:1
通过熔融共混法制备了纳米硫酸钡增强增韧尼龙66复合材料。研究了纳米硫酸钡含量对增强增韧尼龙66复合材料力学性能的影响。结果表明,纳米硫酸钡对尼龙66有显著的增强增韧作用。尼龙66的韧性、刚性和强度随着纳米硫酸钡含量的增加先增后减,在纳米硫酸钡质量分数为3%时,力学性能最优;对比空白样,缺口冲击强度提高了17.1%,弯曲强度和模量分别提高了5.74%和11.57%,拉伸强度和模量稍有提高。 相似文献
2.
PA66的增韧增强研究 总被引:3,自引:0,他引:3
研究了玻璃纤维和弹性体(EPDM—g—MAH),对尼龙66(PA66)的增韧、增强的效果。结果表明,玻璃纤维对PA66有很好的增强效果,当玻璃纤维质量分数达30%时,共混体系的拉伸强度达到112.13MPa;玻璃纤维对PA66也有一定的增韧作用,当玻璃纤维质量分数为18%时,增韧效果最好。EPDM—g—MAH对PA66有很好的增韧作用,当EPDM—g—MAH填充量增加到10%时,共混体系的冲击强度提高到28.3kJ/m^2;但体系的拉伸强度有所下降。 相似文献
3.
4.
采用液压疲劳试验机研究了尼龙分子量和结晶度的大小,加载频率,最大载荷,环境温度和内应力对玻纤增强尼龙66疲劳寿命的影响。结果表明,随尼龙66分子量和结晶度的增加,疲劳寿命增加;材料中玻纤分布均匀,取向明显,有利于提高疲劳寿命;随加载频率,内应力,最大载荷及环境温度的提高,疲劳寿命显著降低。 相似文献
5.
研究了改性三元乙丙橡胶增韧尼龙66时橡胶含量对冲击韧性的影响。用WAXD研究了增韧前后尼龙66的结构变化,计算了结晶度和微晶尺寸,结果表明超韧后尼龙66的结晶性下降。同时测定了冲击断口应力发白区的结构变化,说明在断裂过程中,由于基体屈服,韧性尼龙66晶型发生了转变(部分α型转化为准六方晶型) 相似文献
6.
尼龙6的增韧增强改性的研究进展 总被引:1,自引:0,他引:1
介绍了工程塑料尼龙6的增韧增强改性的研究进展。弹性体及刚性粒子均可增韧尼龙6,但对其他性能有显著影响。尼龙6的增强可采用纤维增强及纳米粒子增强,纳米粒子增强效果优于纤维增强。 相似文献
7.
8.
李跃文 《玻璃钢/复合材料》2017,(3)
阐述了玻璃纤维增强尼龙66在增韧改性、阻燃改性、耐溶剂改性、耐磨改性、界面改性、复合改性和制备工艺改进等方面的研究进展。指出玻璃纤维增强尼龙66目前常用的增韧方法是与弹性体和高韧性聚烯烃共混,而阻燃改性的有效手段是添加微胶囊化红磷和P-N型阻燃剂。 相似文献
9.
以玻璃纤维(GF)增强,马来酸酐接枝氢化苯乙烯-丁二烯嵌段共聚物(SEBS-g-MAH)增容尼龙10T/尼龙66(PA10T/PA66)共混物,考察了两者用量对共混物力学性能、热变形温度、加工性能等的影响。结果表明,随着玻璃纤维添加量从5%增加到40%,复合材料的拉伸强度不断增加,缺口冲击强度先下降后增加,热变形温度大幅度增加,加工性能则变差,SEBS-g-M AH可以明显提高复合材料的缺口冲击强度。PA66与PA10T质量比为35/65,玻璃纤维添加量为40%,SEBS-g-M AH添加量为5%时,所得复合材料的拉伸强度为223. 4 MPa,缺口冲击强度为19. 65 k J/m~2,热变形温度为237. 9℃,熔体质量流动速率为12. 1 g/10min。冲击断面扫描电镜照片表明SEBS-g-MAH可以提高GF、PA10T和PA66之间的相容性。差示扫描量热研究表明PA66和SEBS-g-MAH会破坏PA10T结晶,GF添加量为5%时促进PA10T结晶,40%时稍微阻碍其结晶。 相似文献
10.
高抗冲玻纤增强尼龙-66的研制 总被引:4,自引:1,他引:4
研究了尼龙 66/玻璃纤维/增韧剂共混材料的力学性能。结果表明随玻纤含量的增加,材料的拉伸强度、弯曲强度有大幅度的提高,冲击强度则较为复杂,增韧剂加入,材料的韧性大幅度的提高。添加 3 0 %~ 3 5 %的玻纤,8%~ 12 %的增韧剂,材料的综合力学性能最佳。 相似文献
11.
12.
13.
14.
马来酸酐熔融接枝SBS及其对PA66的增韧作用 总被引:5,自引:0,他引:5
通过加入复合抗氧剂A(酚类),B(亚磷酸酯类)及流动改性剂(液体石蜡),采用热引发熔融接枝法制备马来酸酐接枝SBS,获得了具有较高接枝率(0.52%)和较好熔体流动性且不含凝胶的马来酸酐接枝SBS产物,用该产物增韧PA66,获得了较好的增韧效果。 相似文献
15.
对尼龙(PA)6进行增韧可以改善其低温下的冲击强度,扩展PA6材料的应用领域。以PA6、聚烯烃增韧剂、抗氧剂为原料,在同向双螺杆挤出机中制备了增韧PA6材料,考察了一次挤出与二次挤出对增韧PA6材料力学性能的影响。结果发现,挤出过程对增韧PA6的拉伸强度、断裂伸长率、拉伸断裂强度以及室温冲击强度影响显著,二次挤出过程得到的增韧PA6材料的性能下降,这与PA6在二次挤出过程中发生了更严重的氧化降解有关,但是对拉伸屈服强度和–40℃冲击强度影响不显著,说明这些性能对挤出过程以及氧化降解缺陷不敏感。 相似文献
16.
17.
采用双螺杆挤出机作为聚合反应器,进行反应挤出玻璃纤维增强尼龙6的操作工艺条件探索。结果显示,加入未经处理的玻璃纤维对聚合影响较大,复合材料中的单体含量较纯反应挤出尼龙6的高,处理过的玻璃纤维与尼龙6经反应挤出后,材料的性能各项指标有明显提高。 相似文献
18.
以溴化聚苯乙烯(BPS)和自制的有机氮磷阻燃剂(NPR)为尼龙(PA)66的阻燃剂,以短切玻璃纤维为增强剂,加入增韧剂三元乙丙橡胶,制备了阻燃增强增韧PA66材料,研究了阻燃剂的加入及复配对材料力学性能、极限氧指数(LOI)、垂直燃烧性能、最大烟密度、热稳定性等性能的影响。结果表明,相对于BPS,NPR对材料力学性能的不利影响更大,单独使用BPS时材料的阻燃效果较差,而单独使用NPR可明显提升材料的阻燃性能,当NPR质量分数为15%时,材料的LOI为34%,垂直燃烧等级达到V–0级,拉伸强度、弯曲强度和缺口冲击强度分别为161,224 MPa和12 kJ/m~2。在阻燃剂总质量分数为15%的条件下,与单独使用NPR相比,BPS与NPR的复配进一步降低了材料的拉伸与弯曲强度,但在保持阻燃性能的同时降低了材料成本。NPR的加入导致材料最大烟密度有所增大,热降解提前,而BPS与NPR的复配进一步增大了材料的最大烟密度,使热降解有所延后。 相似文献