首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of lamellar structures were produced in XD TiAl alloys (Ti-45 at. pct and 47 at. pct Al-2 at. pct Nb-2 at. pct Mn+0.8 vol pct TiB2) by selected heat treatments. During creep deformation, microstructural degradation of the lamellar structure was characterized by coarsening and spheroidization, resulting in the formation of fine globular structures at the grain boundaries. Grain boundary sliding (GBS) was thought to occur in local grains with a fine grain size, further accelerating the microstructural degradation and increasing the creep rate. The initial microstructural features had a great effect on microstructural instability and creep resistance. Large amounts of equiaxed γ grains hastened dynamic recrystallization, and the presence of fine lamellae increased the susceptibility to deformation-induced spheroidization. However, the coarsening and spheroidization were suppressed by stabilization treatments, resulting in better creep resistance than the microstructures without these treatments. Furthermore, well-interlocked grain boundaries with lamellar incursions were effective in restraining the onset of GBS and microstructural degradation. In the microstructures with smooth grain boundaries, a fine lamellar spacing significantly lowered the minimum creep rate but rapidly increased the tertiary creep rate for the 45 XD alloy. For the 47 XD alloy, well-interlocked grain boundaries dramatically improved the creep resistance of nearly and fully lamellar (FL) structures, in spite of the presence of coarse lamellar spacing or equiaxed γ grains. However, it may not be feasible to produce a microstructure with both a fine lamellar spacing and well-interlocked grain boundaries. If that is the case, it is suggested that the latter feature is more beneficial for creep resistance in XD TiAl alloys with relatively fine grains.  相似文献   

2.
The αγ phase transformation during rapid quenching and subsequent isothermal aging has been investigated in a Ti-48 at pct Al alloy. The microstructure changes from a completely massively transformed γ-grain structure to a mixed microstructure of the massively transformed γ grains and the untransformed (meaning massively untransformed) fine α 2/γ lamellae with an increase in the cooling rate from the high-temperature α phase field. Fine γ grains are generated from these fine α 2/γ lamellae by subsequent again at 1323 K. The fine γ grains contain many defects, such as dislocations, microtwins (or stacking faults), domain boundaries, and variants, which are frequently observed in the massive γ grains. This result suggests that the formation mechanism of the fine γ grains during aging is similar to that of the massive γ grains. When the fine γ/γ lamellar sample, which is formed by preliminary aging at a lower temperature (1173 K), is aged at a higher temperature (1323 K), apparent changes in microstructure could not be recognized. This result indicates that the fine γ-grain formation is closely related to the α 2γ phase transformation in the fine α 2/γ lamellae. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformation Committees.  相似文献   

3.
The hard-orientated polysynthetically twinned (PST) crystal with the lamellar plates oriented parallel to the compression axis was deformed at 1150 K under the applied stress of 158 to 316 MPa. Microstructural changes were examined quantitatively for the PST crystal during creep deformation. In the as-grown PST crystal of the present study, proportions of α 2/γ, true twin, pseudotwin, and 120 deg rotational fault interfaces were 12, 59, 12, and 17 pct, respectively. After creep deformation, lamellar coarsening by dissolution of α 2 lamellae and migration of γ/γ interfaces were observed. The acceleration of creep rate after the minimum strain rate in the creep curve was attributed to the lamellar coarsening and destruction of lamellar structure during the creep deformation. Thirty-two percent of α 2/γ interfaces, 51 pct of true twin interfaces, 74 pct of pseudotwin interfaces, and 80 pct of 120 deg rotational faults disappeared after 4 pct creep strain at 1150 K. The α 2/γ interface was more stable than γ/γ interfaces during the creep deformation. The pseudotwin interface and 120 deg rotational fault were less thermally stable than the true twin interface for γ/γ interfaces. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

4.
Strengthening of a gamma TiAl alloy was sought by a chemical modification of the composition with carbon. Up to 0.6 at. pct of carbon was added to the Ti-46.6Al-1.4Mn-2Mo alloy processed by elemental powder metallurgy. Carbon addition resulted in considerable microstructural changes such as refinement, by a factor of about 2, of the lamellar microstructure and carbide precipitation. The cause of the lamellar structure refinement is twofold, increased heterogeneous nucleation rate and decreased γ platelet growth rate, the net result of which was a retarded diffusional transformation kinetics of α to α/γ lamellae. As a consequence of the microstructural changes, the high-temperature tensile properties and the creep properties of the alloy were significantly improved. Anomalous hardening was also observed at 800 °C, resulting in a tensile yield strength of 700 MPa. The strengthening effect of carbon was realized by the microstructural refinement and by precipitation hardening of intergranular as well as interlamellar Ti3AlC. In terms of the tensile properties and the creep properties, the optimum amount of carbon addition was 0.3 at. pct.  相似文献   

5.
The response of as-cast structures of 12 alloys in the Ti-Al-Mo system containing 44 to 50 at. pct Al and 2 to 6 at. pct Mo to simple single step heat treatments in the temperature range 1373 to 1673 K is described. The microsegregation patterns present in the cast structure persist to a large extent after heat treatment, especially below 1673 K. However, tentative conclusions regarding phase equilibria in this temperature and composition range are drawn from the results. High-temperature equilibria are dominated by the β, α+β, and α+γ phase fields, while the β+γ phase field dominates equilibrium below 1473 K. Three major types of transformation behavior are observed: a massive α to γ transformation, which occurs within the α phase on quenching from 1673 and 1573 K in alloys centered around the 48 pct Al composition; a eutectoid transformation from α to B2+γ mixtures, which occurs at 1473 K and below in alloys centered around the 48Al-4Mo and 46Al-6Mo compositions; direct γ precipitation in β, which occurs primarily in the 44Al-6Mo composition at 1273 K and below; and finally growth of γ lamellae in α+γ lamellar structures with B2 precipitation on lamellar interfaces, which occurs over a broad range of alloy compositions and temperatures.  相似文献   

6.
The composition and structure of Ti-48 at. pct Al alloys with various oxygen contents, quenched from a homogeneous α state, have been studied by means of one-dimensional atom-probe (1DAP) and transmission electron microscopy (TEM) analysis. Two regimes are observed. The change from one regime to the other depends on the global oxygen content. If the oxygen content is lower than 1.2 at. pct, the αγ m massive transformation is involved during the quench. The alloys, hence, exhibit massive γ m-structure regions and regions having a two-phase (α 2+γ) ultrafine lamellar structure. Very thin α 2 plates, saturated with oxygen, are observed in γ m regions. The precipitation of these α 2 plates is promoted by excess oxygen in the γ m structure. Within ultra-fine lamellar-structure regions, oxygen is concentrated in α 2 lamellae (not saturated with oxygen) and is found to be responsible for the high volume fraction of α 2 phase. When the oxygen content is larger than 1.2 at. pct, the massive transformation is suppressed and the ultrafine lamellar structure is only observed in quenched samples. Analysis of the αα 2 chemical ordering in the classical lamellar structure, formed within the (α+γ) dual-phase field, shows that high oxygen contents favor the chemical-ordering reaction of α phase at high temperatures (e.g., 1423 and 1523 K). It has, hence, been inferred that, above 1.2 at. pct O, the αγ m massive transformation is suppressed and replaced by the αα 2+y transformation paths. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

7.
8.
Fe-37.3 wt pct Ni-3.6 wt pct Al-3.3 wt pct Ti-0.2 wt pct C alloy, which reveals an excellent combination of high strength and good elongation endowed by formation of homogeneously dispersed fine γ′ precipitates in the matrix during aging at 823 K, has been investigated by means of transmission electron and optical microscopies, electron diffractions, and tensile tests. The influence of unique γ′+α cellular products on the mechanical properties has also been studied. Because of low elastic mismatch between the austenitic γ matrix and isomorphic γ′ precipitate phases, the homogeneously distributed precipitate particles, which formed at the early stage of aging, were observed to persist even after long-term aging. After very lengthy aging, the fine γ′ phase particles were changed to coarser γ′ lamellae at the grain boundary reaction front, which were alternately arranged with fine α lamellae that were estimated to have been transformed from the austenite-stabilizing-solute(Ni, C)-depleted γ lamellae. The fine duplex γ′+α cellular product did not affect deleteriously the room-temperature tensile properties of the alloy. However, the cellular structure was observed to cause the grain boundary embrittlement of the aged alloy at elevated temperatures higher than 681 K.  相似文献   

9.
Two binary titanium aluminide alloys, Ti-43A1 and Ti-47A1 (atomic percent), were discontinuously reinforced with 6 vol pct titanium diboride, resulting in a two-phase Ti3Al and TiAl (α2 and γ, respectively) matrix with a dispersion of TiB2 particulate. Cast material was successfully ex-truded and subjected to a series of single-step and duplex-step heat treatments. Thermo-mechanical processing was correlated with microstructural changes, and the ambient temperature mechanical properties were measured for the various heat-treated conditions using tensile and hardness testing. Yield stress and plastic elongation to failure and hardness were found to cor-relate well with the fraction of proeutectoid, or primary, TiAl formed during heat treatment within the α/γ phase field. Precipitation of y within proeutectoid α grains during subsequent aging treatments within the α2 phase field was seen to increase the room-temperature ductility with negligible debits in yield stress. Enhanced ductility and decreases in yield stress and hard-ness are associated with morphologically large regions of the TiAl phase. Incompatibility of slip systems across γ/α2 and the inherent resistance to slip in hyperstoichiometric Ti3Al are suggested as possible explanations for the observed phenomena. Formerly with Martin Marietta Laboratories  相似文献   

10.
The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxedy constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures. BRIAN D. WORTH, formerly with the Department of Materials Science and Engineering, The University of Michigan  相似文献   

11.
The stability of a lamellar structure consisting of α 2 and γ phases in alloys Ti-48Al, Ti-48Al-2Mo, Ti-48Al-4Nb, and Ti-48Al-1Mo-4Nb has been studied as a function of aging time and temperature. The alloys were solution treated (1400 °C, 30 min, and air-cooled (AC)) and aged at 1000 °C and 1100 °C for 1, 4, and 16 hours, respectively. The results indicate that the kinetics of lamellae to equiaxed transformation depends on alloy chemistry, aging time, and temperature. The Nb decreases and Mo increases the kinetics of transformation. The combined effect of Nb and Mo results in the highest volume fraction of equiaxed microstructure at a given aging time and temperature. The results have been discussed in relation to microstructural features and have been compared with those reported in other α 2+γ alloys.  相似文献   

12.
The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of α″-Fe16N2 below 443 K does not only occur upon aging of supersaturated α (ferrite) and α′ (martensite), but also upon transformation of γ′-Fe4N1-z and ɛ-Fe2N1-x (<20 at. pct N). No α″ was observed to develop upon aging of γ(austenite). Therefore, it is proposed that γ′ is a stable phase at temperatures down to (at least) 373 K. Phase formation upon annealing at low temperatures is apparently governed by the (difficult) nucleation and (slow) growth of new Fe-N phases: α″ forms as a precursor for α because of slow nitrogen diffusion, and nitrogen-enriched ɛ develops as a precursor for γ′ because of a nucleation barrier.  相似文献   

13.
Precipitation of α phase in massive and feathery microstructures was studied during aging of a Ti-48 pct Al-2 pct W-0.5 pct Si alloy in the single α field. It was found that the α phase mainly precipitates along the γ-plate interfaces as laths in the feathery structure, while it nucleates at various sites in the massive structure in the form of idiomorphs and especially of plates. The γ m α reaction proceeds by the growth of pre-existing α precipitates and chiefly by the development of new α plates. The α plates are likely to originate from the splitting of unit dislocations into Shockley partials and to grow by the diffusional ledge mechanism, which shows both diffusional and shear character. During aging, the stacking faults (SFs) in the massive γ domains evolve into SF-shaped α precipitates through a transition γ′ phase.  相似文献   

14.
Phase decomposition of austenitic Fe-42.4 wt pct Ni-4.15 wt pct Al-0.45 wt pct C on aging at 823 K was investigated by means of electron microscopy, selected area diffraction and microdiffraction, and microprobe chemical analysis. During annealing, κ phase of L′l2 structure fully coherent with the matrix formedvia the nucleation and growth mechanism. The matrix phase and cubic κ carbide were later gradually encroached upon by discontinuously precipitated lamellar phases. The duplex fine lamellae are composed of alternately arranged carbon-depleted Ll2 phase and cementite. Between the two constituents in the lamellae, the Pitsch orientation relationship is fulfilled, and at the same time, the matrix phase of the grain which the discontinuously precipitated lamellar colony has left behind maintains the crystallographic cube-to-cube correspondence with the product Ll2 phase.  相似文献   

15.
The effect of additives on the eutectoid transformation of ductile iron   总被引:1,自引:0,他引:1  
The eutectoid transformation of austenite in cast iron is known to proceed by both the meta-stable γ → α + Fe3C reaction common in Fe-C alloys of near eutectoid composition, and by the direct γ → α + Graphite reaction, with the graphite phase functioning as a car-bon sink. In addition, the meta-stable cementite constituent of the pearlite can dissolve near the graphite phase (Fe3C → α + Graphite), producing free ferrite. Isothermal trans-formation studies on a typical ductile iron (nodular cast iron) confirmed that all of these reaction mechanisms are normally operative. The addition of 1.3 pct Mn was found to substantially retard all stages of the transformation by retarding the onset of the eutectoid transformation, decreasing the diffusivity of carbon in ferrite, and stabilizing the cemen-tite. Minor additions of Sb (0.08 pct) or Sn (0.12 pct) were found to inhibit the γ →α + Graphite reaction path, as well as the Fe3C → α + Graphite dissolution step, but did not significantly affect the meta-stable γ → α + Fe3C reaction. Scanning Auger microprobe analysis indicated that Sn and Sb adsorb at the nodule/metal interphase boundaries during solidification. This adsorbed layer acts as a barrier to the carbon flow necessary for the direct γ → α + Graphite and Fe3C → α + Graphite reactions. With the graphite phase dis-abled as a sink for the excess carbon, the metal transforms like a nongraphitic steel. The effects of Mn, Sn, and Sb on the eutectoid transformation of ductile iron were shown to be consistent with their behavior in malleable iron.  相似文献   

16.
Solidification microstructures of arc-melted, near-equiatomic TiAl alloys containing boron additions are analyzed and compared with those of binary Ti-Al and Ti-B alloys processed in a similar fashion. With the exception of the boride phase, the matrix of the ternary alloy consists of the same α2 (DO19) and γ (Ll0) intermetallic phases found in the binary Ti-50 at. pct Al alloy. On the other hand, the boride phase, which is TiB (B27) in the binary Ti-B alloys, changes to TiB2 (C32) with the addition of Al. The solidification path of the ternary alloys starts with the formation of primary α (A3) for an alloy lean in boron (∼1 at. pct) and with primary TiB2 for a higher boron concentration (∼5 at. pct). In both cases, the system follows the liquidus surface down to a monovariant line, where both α and TiB2 are solidified concurrently. In the final stage, the α phase gives way to γ, presumably by a peritectic-type reaction similar to the one in the binary Ti-Al system. Upon cooling, the α dendrites order to α2 and later decompose to a lath structure consisting of alternating layers of γ and α2.  相似文献   

17.
The effect of added oxygen in the range of 1000 to 4000 wt ppm on the microstructures of a Ti-48Al-2Cr-2Nb alloy has been investigated and compared to the microstructures for a high-purity alloy. For specimens cooled from theα phase, interstitial oxygen stabilizes the lamellar microstructure with respect toγ grains, with higher than equilibrium values for theα 2 volume fraction. For specimens cooled from theα +γ phase field, the lamellar microstructure still tends to be favored by oxygen, but it is found that the phase volume fractions are not significantly different from equilibrium values. This suggests that interstitial O essentially reduces the kinetics of theα toα +γ transformation. Thus, interstitial oxygen will have a strong effect on microstructures obtained by continuous cooling fromα, but significantly less on those, such as the duplex microstructure, obtained by long treatment in theα +γ phase field. In general, increased O content is well correlated with reduced ductility. Finally, the role of interstitial oxygen on this phase transformation is discussed.  相似文献   

18.
Plastic deformation and fracture of binary TiAl-base alloys   总被引:4,自引:0,他引:4  
The mechanical behavior of binary TiAl alloys containing 46 to 60 at. pct Al has been studied in bulk materials preparedvia rapid solidification processing. Bending and tensile tests were carried out at room temperature as a function of Al concentration. A few alloys were also tested from liquid nitrogen temperature to ∼ 1000°C. Deformation substructures were studied by analytical transmission electron microscopy and fracture modes by scanning electron microscopy (SEM). It was found that both microstructure and composition strongly affect the mechanical behavior of TiAl-base alloys. A duplex structure, which contains both primary y grains and transformedγ/α 2 lamellar grains, is more deformable than a single-phase or a fully transformed structure. The highest plasticities are observed in duplex alloys containing 48–50 at. pct Al after heat treatment in the center of theγ + α phase field. The deformation of these duplex alloys is facilitated by 1/2[110] slip and {111} twinning, but very limited superdislocation slip occurs. The twin deformation is suggested to result from a lowered stacking fault energy due to oxygen depletion or an intrinsic change in chemical bonding. Other factors, such as grain size and grain boundary chemistry and structure, are important from a fracture point of view. The results on the deformation and fracture modes as a function of test temperature are also discussed.  相似文献   

19.
Discontinuous coarsening (DC) of the primary lamellar structure (PLS) occurring at lamellar colony boundaries (LCBs) and in surface layers of various Ti-(40 to 45) at. pct Al binary and Ti-46 at. pct Al-X (X=Si and C) ternary alloys was systematically investigated by using optical microscopy and scanning and transmission electron microscopy. The compositions of the α 2 and γ phases in the primary lamellar structure were estimated based on the weight fractions of the two phases, determined by X-ray diffraction. When the solution-treated Ti-(40 to 45) at. pct Al binary alloys were subsequently soaked at 1000 °C, the primary lamellae in the Ti-40 at. pct Al alloy were the most stable, while those in the Ti-44 at. pct Al were the most unstable. Both the thermodynamic analysis and experimental results confirm that the driving force of the coarsening is mainly derived from the reduction of the chemical free energy (i.e., out-of-equilibrium chemical composition) and the interfacial energy of primary lamellae, whereas the coarsening resistance is mainly from the increase of the elastic strain energy of lamellar interfaces and the surrounding during coarsening. It is found that Si has an exceptional ability to hinder the coarsening of the primary lamellar structure at high temperatures, but the precise mechanism for this improvement is uncertain now. Based on this study, a proposal is finally addressed to improve the thermal stability of the primary lamellar structure of titanium aluminides.  相似文献   

20.
This article presents in-situ observation of ferrite (α)/austenite (γ) phase transformation in an Fe-8.5 at. pct Ni alloy deformed by rolling using an automated scanning electron microscopy/energy backscattered diffraction (SEM/EBSD) system. During heating, recrystallization in α phase and α → γ phase transformation independently occurred. The γ grains nucleated in unrecrystallized α grains were most probably incorporated into the grain interior of recrystallized α grains. They did not have any specific orientation relation (OR) with recrystallized α grains and grew in an isotropic manner. On the other hand, the intragranular γ grains nucleated in recrystallized α grains had a Kurdjumov–Sachs (K-S) OR with the α grains and grew in a considerably anisotropic manner. They preferentially grew along the common direction of surface traces of {110} α /{111} γ . Approximately half of grain boundary (GB) allotriomorphs had either the K-S OR or the Nishiyama–Wasserman (N-W) OR with the parent α grains. The γ allotriomorphs predominantly grew into the α grain having the special OR with themselves. The GB character distribution of γ phase at high temperatures was measured. The fraction of CSL boundaries was as high as 63 pct, particularly that of Σ3 grain boundaries (GBs) was 54 pct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号