首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The determination of metallothionein (MT) concentrations in species with different feeding habits is important from the ecotoxicological point of view because it provides a better understanding of the role of these proteins in metal uptake pathways. The main objective was study the variation of MT and metal (Cd, Cu and Zn) concentrations with size and weight in the limpets Patella aspera. In addition investigate the relationship between MT and metal concentrations in limpets from different metal load environments of the south coast of Portugal with the aim to use MT in P. aspera as a biomarker of metal exposure. MT concentrations in the whole soft tissues of P. aspera increased with size and weight while metals decrease with size and weight. MT concentrations showed no significant relationship with Cd or Cu concentrations in the limpets from the South Portuguese Coast. However, a negative exponential relationship detected between MT and Zn concentrations suggest that Zn bound to MT might be displaced by Cd or Cu ions. The ability of limpets to store both Cd and Cu bound to MT may be responsible for the tolerance of this species to contaminated environments. The relationship between MT concentrations and Zn indicates that MT seems to play a minor role in binding Zn in Patella species.  相似文献   

2.
The first aim of our study was to determine the concentrations of selected trace elements (Zn, Cu, Fe, Mn, Cd and Pb) in tissues of green turtles from Tortuguero National Park on the North Caribbean coast of Costa Rica and of loggerheads from the Mediterranean Sea. Zn, Cu, Fe, Mn and Cd were present at detectable concentrations in all samples and showed clear organotropism, whereas Pb was not always over the detection limit and did not show any particular tissue distribution. The two species presented significant differences: Cu and Cd in liver and kidney of Chelonia mydas were significantly higher with respect to the concentrations found in Caretta caretta. The second and major goal of our study was to evaluate hepatic and renal metallothionein (MT) as a biomarker of environmental metal exposure. The present paper is the first to describe and quantify MT in kidney and liver of loggerhead turtles and in kidney of green turtles. MT concentrations were higher in green than in loggerhead turtles. In addition, positive correlations were found between Cu and Cd concentrations and Cu-MT and Cd-MT in liver and kidney in both species, suggesting a pivotal role of MT in metal storage and detoxification. The quantification of metals and MT in liver and kidney may be a valid biomarker of metal exposure in the aquatic environment to assess the health of marine sea turtles as long as accurate analytical methods are adopted.  相似文献   

3.
A study performed over 12 months with caged mussels Mytilus galloprovincialis in the coastal marine zone, which is under urban pressure, reveals a temporal variation of digestive gland mass, which causes "biological dilution" of cytosolic metallothionein (MT) and trace metal (Cd, Cu, Zn, Fe, Mn) concentrations. The dilution effect was corrected by expressing the cytosolic MT and metal concentrations as the tissue content. Consequently, the changes of the average digestive gland mass coincide with the changes of MT and trace metal contents. From February to June, MT contents are nearly twice and trace metal contents nearly three times higher than those of the other months. The period of increased average digestive gland mass, of MT and trace metal contents probably overlaps with the sexual maturation of mussels (gametogenesis) and enhanced food availability. Since natural factors contribute more to the MT content than the sublethal levels of Cd, the digestive gland of M. galloprovincialis is not considered as a tissue of choice for estimating Cd exposure by means of MTs.  相似文献   

4.
Acidification has been shown to increase the concentrations of many metals in lake water as a result of increased mobility at lower pH, whereas liming has been found to decrease lake water metal concentrations. We hypothesise that increased sedimentation as a result of liming increases the metal burdens in the sediments of limed lakes, but especially those that have been treated directly on the lake surface. We also hypothesise that acidification results in decreased metal burdens in the sediments, whereas near neutral reference lakes and lakes where the lime has been applied on wetlands or upstream have intermediate metal burdens in the sediments. In order to test the hypothesis, we statistically compare the areal metal and P burdens in the sediments of four groups of lakes: (1) Mainly surface limed lakes, (2) Mainly upstream/wetland limed lakes, (3) Near neutral reference lakes and, (4) Acidified reference lakes. The statistical analysis reveals that the surface limed group have significantly higher areal burdens of As, Cd, Co and Zn in the sediment compared to the acidified reference group, despite large variations within the groups. The investigation indicates that surface liming increases the areal burdens in the sediments of Cd and Pb, probably of As, Ca and Mn and possibly Co and Zn, whereas acidification decreases the areal burdens in sediments of Cd, Fe, Mn and possibly Co, P and Zn. The results of the study confirm the hypothesis.  相似文献   

5.
We have measured the concentrations of heavy metals in soils, earthworms and tissues of woodcocks in Quaderna Valley, northern Italy. The soil concentration of metals analysed in this research is consistent with data reported by other authors for uncontaminated or slightly contaminated soils. In earthworms, metals were mostly accumulated in the encapsulating chloragogenous tissue; the positive correlation between Cu concentration in the soil and in earthworms is noteworthy. Heavy metal distribution in the tissues of woodcock showed that Cd accumulation in the kidney was linked to the diet. Cu and Fe were preferentially concentrated in the liver and Zn in the testis. Kidney Cd and Zn concentrations were higher in adults than in juveniles. In addition, a main kidney metallothionein isoform, containing Cd and Zn, was isolated. In the kidney, Cd levels were linearly correlated with the concentration of metallothionein. Of the investigated metals, Cd raises the greatest concern, due to the increasing soil contamination by human activities.  相似文献   

6.
Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.  相似文献   

7.
The current study represents the first investigation of the suitability of marsupial and eutherian mammalian hair as indicator tissue for metal exposure and accumulation within contaminated Australian terrestrial ecosystems. A soil metal contamination gradient was established across 22 sites at increasing distances from a decommissioned Lead/Zinc smelter in NSW, Australia. Within each site, soil and small mammal populations were sampled. An Australian native marsupial, the insectivorous Brown Antechinus, Antechinus stuartii: Dasyuridae, and introduced rodents, the omnivorous Brown or Norway Rat, Rattus norvegicus: Muridae and the Black Rat, Rattus rattus: Muridae were assessed for hair concentrations of Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn). Metals in soil were most elevated at sites within close proximity to the smelter, with soil metal concentrations decreasing with distance from the smelter. The non-essential metals Pb and Cd were accumulated in hair, both metals exhibiting positive linear relationships with environmental exposure (soil metal concentrations). When the variables of weight and snout-vent length were considered, no further contribution in terms of explaining the variability in hair Cd or Pb was observed for all species examined. The essential metals Cu and Zn were regulated in hair, remaining similar across the metal contamination gradient. A significant negative correlation between snout-vent length and hair Cu concentration was found for the Brown Rat; greater hair Cu concentrations were found in smaller individuals of this species. Accumulation of Pb to hair was similar among species while concentrations of Cd in Brown Rat hair were higher than both Black Rat and Brown Antechinus hair. As each of the three aforementioned species exhibit similar bioaccumulation relationships for Pb, we suggest that sampling hair from introduced rodents (pest species) may provide a suitable proxy for the assessment of Pb bioavailability for a range of small mammals within Australian urban remnants.  相似文献   

8.
Filipović V  Raspor B 《Water research》2003,37(13):3253-3262
Two wild fish populations (Mullus surmuletus (striped red mullet) as a bottom, and Liza aurata (golden grey mullet) as a pelagic species, were sampled in Kastela Bay, Middle Dalmatia. Metallothionein (MT) and metal content (Cu, Zn, Cd) was determined in heat-treated supernatants (S50) of fish tissues. MT levels were statistically different in liver and kidney of sampled species, with highest value in kidney of M. surmuletus (31.1 +/- 7.96 micrograms mg-1 proteins). Metal levels are statistically different between all tissues. Highest metal concentrations are in liver cytosols, especially of Cu in L. aurata (6.46 +/- 3.45 micrograms ml-1 S50). High positive correlation of MT and cytosolic metals is established with Zn in liver of M. surmuletus (0.95) and with Cu in liver of L. aurata (0.69). Total length, body weight and age are mostly correlated biometric parameters with MT and soluble metal concentrations. MT and metal levels increase with age in liver cytosol of both species.  相似文献   

9.
Macronutrient (N, P, K, Mg, S, Ca), heavy metal (Fe, Zn, Mn, Cu, Ni, Cd, Pb) and Al concentrations in understorey bryophytes, lichens and vascular plant species growing in Scots pine forests at four distances from the Harjavalta Cu-Ni smelter (0.5, 2, 4 and 8 km) were compared to those at two background sites in Finland. The aim was to study the relationship between element accumulation and the distribution of the species along a pollution gradient. Elevated sulfur, nitrogen and heavy metal concentrations were found in all species groups near the pollution source. Macronutrient concentrations tended to decrease in the order: vascular plants>bryophytes>lichens, when all the species groups grew on the same plot. Heavy metal concentrations (except Mn) were the highest in bryophytes, followed by lichens, and were the lowest in vascular plants. In general, vascular plants, being capable of restricting the uptake of toxic elements, grew closer to the smelter than lichens, while bryophytes began to increase in the understorey vegetation at further distances from the smelter. A pioneer moss (Pohlia nutans) was an exception, because it accumulated considerably higher amounts of Cu and Ni than the other species and still survived close to the smelter. The abundance of most of the species decreased with increasing Cu and Ni concentrations in their tissues. Cetraria islandica, instead, showed a positive relationship between the abundance and Cu, Ni and S concentrations of the thallus. It is probable that, in addition to heavy metals, sporadically high SO(2) emissions have also affected the distribution of the plant species.  相似文献   

10.
The atmospheric pollution history of a former Belgian Zn-smelter complex is preserved in organic sediments of a nearby peat bog pool. The stratigraphy of trace metals, Pb-isotope ratios and mineralogy indicate extreme heavy metal pollution in recent sediments. In the pollutant trend, extremes coincide with maxima in 20th century metal production, minima during major war conflicts and the final shutdown of the smelter. Peak pollution concentrations measure up to 4.7 wt.% Zn, 1.1 wt.% Pb and 0.1 wt.% Cd, which correspond to calculated atmospheric deposition rates of 9.0, 1.6 and 0.16 g m(-2) yr(-1), respectively. 206Pb/207Pb isotope ratios show higher values in the polluted interval (1.135-1.162) relative to local geogenic values deeper down-core (1.194-1.215). Within the polluted interval, three significantly different 208Pb/206Pb plateaus are recognized and suggested to indicate changes in the origins of processed ores. Microprobe analyses on sediment thin sections show extensive in situ FeS2 and ZnS precipitation, which suggests that anoxic processes are responsible for the immobilization of the atmospheric metal inputs. The occurrence of oxidized smelter dusts in an independent surface soil sample indicates a rapid diagenetic transformation of metal oxides into sulfides. Morphology and chemical characteristics allow the distinction between smelter related and diagenetic mineral deposits, and give evidence for dust from open-air ore repositories, as well as smelter operation without dust filters.  相似文献   

11.
The aim of the study was to determine the major source and extent of metal pollution in a residential area of Greater Calcutta. In this area approximately 50,000 people reside in the vicinity of a lead factory that produces lead ingots and lead alloys. Many people, especially children, are affected by lead toxicity. Soils, waters, road dust, leaf dust, leaves and pond sediments were sampled in and around the factory area. Aliquots of the samples were mineralized with nitric acid and hydrogen peroxide in a microwave system. Lead and 19 other elements were quantified in the digests by inductively coupled plasma mass spectrometry. The performance of the procedure was confirmed by analyzing NBS-BCR standard reference soil, leaves, sediment samples. The soils are highly contaminated not only with lead (4.7%), but also with Cd (0.08%), Ag (0.001%), Cu (0.02%), Zn (1.0%), As (1.0%), Mo (0.003%), Sn (0.003%) and Hg (0.03%) (metal concentrations given in parentheses are maximum). Moving away from the smelter, most of metal concentrations, especially Pb, As, Mo, Cu, Hg, Zn, Cd, Sn and Ag, decreased exponentially over increasing distance. In the residential areas near the smelter, notably to the west side of the factory, metal concentrations significantly breached the threshold trigger values set in India by the Central Pollution Control Board (CPCB). Particulate materials from the smelter stack appear to contaminate soils up to at least 0.5 km. However, abnormally high metal levels in the immediate smelter area may be due to primarily fugitive emissions. The surface waters are only contaminated by arsenic ranges from 0.05 to 13.5 mg/l, but the ground water is currently not polluted by lead and arsenic. An appropriate treatment plant with some intervention measures should be taken to save the locality.  相似文献   

12.
The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.  相似文献   

13.
Whole soft tissue concentrations of Mn, Co, Ni, Cu, Zn, Pb, Cd and U were measured in two species of freshwater (unionid) bivalves (Hyridella depressa and Velesunio ambiguus) from a minimally polluted site in the Hawkesbury-Nepean River, south-eastern Australia. Although the mean concentrations of metals in the tissue were similar for each bivalve species, their patterns of accumulation were dissimilar. For each metal, positive linear relationships between tissue concentration and shell length (r2 = 0.37-0.77; P < or = 0.001) and tissue dry weight (r2 = 0.29-0.51; P < or = 0.01) were found in H. depressa, but not in V. ambiguus. However, for both species, positive linear relationships were found between the tissue concentration of each divalent metal and Ca tissue concentration (r2 = 0.59-0.97; P < or = 0.001). For both bivalve species, the normalised rates of accumulation of the metals relative to increasing Ca concentration and/or size, were U approximately = Cd > or = Pb > or = Mn > Co > or = Zn > Cu > Ni. The differential rates of accumulation of divalent metals are interpreted as being predominantly governed by their varying loss rates, which are controlled by the differing solubilities (log Ksp values) of the metals in the phosphatic extracellular granules, the demonstrated major sites of metal deposition in the tissue of H. depressa and V. ambiguus. The rates of accumulation of Mn, Co, Zn, Cu and Ni were linearly and inversely related (r2 = 0.91-0.97; P < or = 0.001) to their solubilities as hydrogen phosphates, a finding consistent with the bioaccumulation model previously developed for the alkaline-earth metals. However, for U, Cd and Pb, this linear inverse relationship did not continue to hold, i.e. their rates of accumulation did not increase with decreasing solubility. However, these results are still consistent with the model if U, Cd and Pb are so insoluble in the granules of H. depressa and V. ambiguus over their lifetime (up to approx. 50 years) that there is effectively no loss of these metals, and hence, no differential between their rates of accumulation. The present results reaffirm the use of Ca tissue concentration to predict the tissue concentrations of other divalent metals by explaining up to 94 and 97% of the variability between individual bivalves of H. depressa and V. ambiguus, respectively. The use of Ca tissue concentration to effectively minimise the inherent variability between individuals in their metal tissue improves the ability of an investigator to discern smaller spatial and/or temporal differences in the metal tissue concentrations of these bivalves, and thus to detect metal pollution.  相似文献   

14.
The concentrations of different forms of heavy metals (Fe, Mn, Zn, Cu, Cr, Ni, Cd and Pb) were determined in a mine dump material rich in chalcopyrite. The concentrations were compared with those of the natural vegetation colonising the dump. Samples taken from the dump are acid (pH(H(2)O) between 3.0 and 5.0), have carbon contents lower than 0.5%, N lower than 0.2%, effective cation exchange capacity between 0.74 and 4.96 cmol(+)kg(-1) and percent Al saturation in the exchange complex higher than 20% in 85% of the samples. Iron was the most abundant heavy metal, in both total and bioavailable forms, and the relative abundance of metals was: Fe>Cu>Mn>Zn>Cr. The total Fe concentrations ranged between 4315 and 31578 mg x kg(-1), the total Cu between 273 and 5241 mg x kg(-1), the total Mn between 294 and 2105 mg x kg(-1), the total Zn between 73 and 894 mg x kg(-1) and total Cr between 0.01 and 30 mg x kg(-1). Ni, Cd and Pb were below the analytical detection limits. The concentration of bioavailable Fe ranged between 40 and 1550 mg x kg(-1); Zn was the least abundant metal in this fraction (between 2 and 100 mg x kg(-1)). Copper was the most abundant heavy metal in the exchange complex and in the aqueous extracts, followed by Zn, Mn and Fe. Exchangeable Cu ranged between 17.7 and 1866 mg x kg(-1), whereas the maximum concentrations of exchangeable Zn, Mn and Fe did not exceed 140 mg x kg(-1). The Cu concentration in the aqueous extracts varied between 0.1 and 8.3 mg x l(-1) and the concentration of Fe was always less than 0.52 mg x l(-1). The heavy metal contents in the spontaneously occurring vegetation in the dump ranged between: 150 and 900 mg Fe x kg(-1), 84 and 2069 mg Mn x kg(-1), 20.5 and 106 mg Cu x kg(-1) and between 35 and 717 mg Zn x kg(-1), when considering all the plant samples analysed. Festuca sp. accumulated Fe, Salix atrocinerea accumulated Zn and Mn, and Frangula alnus and Quercus robur accumulated Mn. These native plant species may contribute to decrease the heavy metal contents in the dump material.  相似文献   

15.
Concentrations of Zn, Cu, Cd and Pb and their sub-cellular distributions were determined in composite samples of digestive glands of the common octopus, Octopus vulgaris caught from two areas of the Portuguese coast characterised by contrasting metal contamination. Minor contents of Zn (1%), Cu (2%), Cd (6%) and Pb (7%) were found in the insoluble fraction, consisting of nuclei, mitochondria, lysosomes and microsome operationally separated from the whole digestive gland through a sequential centrifugation. A tendency for linear relationships between metal concentrations in nuclei, mitochondria, lysosomes and whole digestive gland was observed. These relationships suggest that despite low metal content organelles responded to the increasing accumulated metals, which means that detoxifying mechanism in cytosol was incomplete. Poorer correlations between microsome and whole digestive gland did not point to metal toxicity in the analysed compartments. However, the high accumulated Cd indicated that O. vulgaris is an important vehicle of this element to its predators in the coastal environment.  相似文献   

16.
This greenhouse experiment evaluated the effects of phosphate rock (PR) on arsenic and metal uptake by the arsenic hyperaccumulator Pteris vittata in a soil spiked with arsenic and heavy metals Cd, Pb and Zn. Five soil treatments were used, 1) control with no arsenic, 2) spiked with 50 mg kg(-1) As (As) as Na2H AsO4, 3) spiked with 50 mg kg(-1) As and P as PR (AsP), 4) spiked with 50 mg kg(-1) As, Pb, Cd, and Zn (AsM), and 5) spiked with 50 mg kg(-1) As, Pb, Cd, Zn and P (AsMP). The plants were harvested after growing in the soil for five weeks. Compared to the As treatment, the presence of heavy metals (AsM) reduced arsenic concentrations in the fronds from 1631 to 608 mg kg(-1). However, this effect was mitigated by PR (AsMP), with arsenic concentrations in the fronds increased from 608 to 1046 mg kg(-1). Phosphate rock also significantly reduced Pb (13.5 to 4.10 mg kg(-1)) and Cd (13.0 to 3.45 mg kg(-1)) concentrations in the fronds. Most of the arsenic in P. vittata was accumulated in the fronds (89-93%). Compared to the control, P was more concentrated in the roots along with less P being translocated to the fronds in the treatments with arsenic. While in those same treatments higher Ca concentrations in both the fronds and roots were observed. This research shows that PR was effective in increasing arsenic uptake and decreasing metal uptake by P. vittata and thus can be used as a cost-effective amendment for phytoremediation of arsenic and metal polluted soils.  相似文献   

17.
Liu XJ  Ni IH  Wang WX 《Water research》2002,36(18):4563-4569
The trophic transfer of metals along the food chain has been recognized as an important issue in the study of water quality in recent years. Feeding experiments were conducted to examine the assimilation of three metals (Cd, Cr and Zn) by the zebrafish Danio reiro feeding on the freshwater zooplankton Daphnia magna. The zooplankton were exposed to radiotracers from both the aqueous and dietary phases for different duration, and then pulse-fed to the zebrafish for measurements of metal assimilation efficiency (AE). The calculated AEs were 3-8% for Cd, 2-39% for Cr, and 17-36% for Zn in the zebrafish. For Cd and Zn, there was no statistically significant difference between the two different radiolabeling routes (aqueous and dietary exposure). For Cr, the AEs were higher when it was accumulated by D. magna from the dietary source than when it was accumulated from the aqueous phase. The gut passage time (GPT) was 6-10 h for all metals, with less variation for Zn among the different treatments. There was no obvious relationship between metal GPT and metal AE, presumably due to the narrow range of variation of metal gut passage. About 5-36%, 20-31%, and 8-30% of the total Cd, Cr and Zn was found in the soft tissue of D. magna after the radiolabeling. A much higher fraction of Cd and Zn was found in the soft tissue of D. magna when the metals were accumulated from the dietary phase. No significant relationship between the metal AE and the metal distribution in the soft tissue of D. magna was however documented in this study. Our results demonstrated that there was major difference in metal AE in freshwater fish among different metals. Metal localization in prey organisms and GPT appear to have little influence on metal assimilation by the zebrafish.  相似文献   

18.
Coastal organisms are often exposed to both metal pollution and nutrient enrichment. The influences of major nutrients (nitrate, ammonium, and phosphate) on the accumulation of trace metals (Cd, Cr, Zn and Se) in Ulva fasciata were examined. The relative accumulation of metals was quantified by the kinetic measurements of accumulated metal concentration over a short exposure period (8 h). Our study demonstrated that macronutrients could markedly influence the rate of metal accumulation in the macroalgae. An increase in ambient nitrate concentration resulted in a significant increase in Cd accumulation rate, whereas the rate of accumulation of Cr and Zn was not greatly affected by the ambient nitrate level (between 10 and 100 microM). Zn uptake in nitrate-enriched macroalgae was, however, significantly higher than its uptake in N-starved macroalgae. The accumulation of Cd, Cr and Zn was not appreciably affected by the concentration of ammonium. Se accumulation was significantly inversely related to the ambient phosphate concentration, presumably due to the competitive inhibition by a high P concentration. Cr accumulation in the macroalgae increased significantly with increasing phosphate concentration. These data implied that the influences of major nutrients on cationic and anionic metal accumulation were highly metal-specific. The dependence of metal accumulation on major nutrients will appreciably affect our prediction of metal accumulation in macroalgae and the interpretation of biomonitoring data using the Ulva species.  相似文献   

19.
Evaluation of heavy metal removal from aqueous solution onto scolecite   总被引:3,自引:0,他引:3  
Bosso ST  Enzweiler J 《Water research》2002,36(19):4795-4800
Scolecite is a zeolite associated to basalts of the Parana Continental Igneous Province (PCIP South America). The potential of scolecite as a new material for heavy metal removal (Pb2+ Cu2+, Zn2+, Ni2+, Co2+ and Cd2+) from aqueous solutions is evaluated. The experiments were carried out by immersion of 0.5 g of sample in solutions containing the metal ions, and kept under constant agitation for 24h, at ambient temperature. The meq of cations retained per mass of scolecite was evaluated as a function of: initial concentration (5-60 mg L(-1)), pH (4-6), liquid/solid ratio (200, 1000 and 2000) and particle size. The results indicated a great affinity of scolecite for Cu2+ with a retention value of 130 microeq g(-1) at pH 6, Ci = 30 mg L(-1) and liquid/solid ratio of 200. In the same conditions, the maximum retention measured for the other ions were 64 microeq g(-1) (Zn2+), 56 microeq g(-1) (Pb2+), 31 microeq g(-1) (Ni2+), 7.8 microeq g(-1) (Co2+) and 3.2 microeq g(-1) (Cd2+). These values increase substantially when the L/S ratio is increased. The affinity of copper and lead for scolecite is discussed based on their free ionic forms (i.e., their hydrated bivalent ions) and their hydrolysis products. The remaining ions are retained as free ions.  相似文献   

20.
A Pseudomonas fluorescens strain was isolated from oxic marine sediments obtained from the strand zone of the St Anne Bay (a moderately metal-contaminated site to the west of Cherbourg harbour). The strain, which exhibited a high tolerance to metal contamination when cultivated (minimal inhibitory concentration=950 microM [62 mg L(-1)] for Zn, 660 microM [42 mg L(-1)] for Cu, and 505 microM [57 mg L(-1)] for Cd), was further characterized by its physiological and biochemical responses to metal additions to the culture medium. Bacterial growth was significantly disturbed by 380 microM Zn (25 mg L(-1)), 315 microM Cu (20 mg L(-1)) and 90 microM Cd (10 mg L(-1)). The Zn-containing alkaline phosphatase was studied as an intoxication biomarker. Its activity was stimulated (+9%) by an excess of Zn, but inhibited by Cd (-55%) and Cu (-10%), these two elements could displace the native Zn or/and disturb the enzyme 3D-structure. Bacterial O(2) consumption was recorded as a global physiological response to metal stress. This parameter dropped with increasing Cd and Cu contamination (-49% and -45%, respectively, at 20 mg L(-1)). By contrast, Zn increased O2 consumption (approximately +40% for the different tested concentrations). The proteomes of bacteria grown in the presence or absence of 20 mg metal L(-1) were characterized by 2D-gel electrophoresis. The number of spots exhibiting a difference in intensity between the contaminated sample and the control was 65, 68, and 103, for Zn, Cu and Cd, respectively. Among them, 45, 61 and 82 spots respectively appeared de novo or increased in intensity, indicative of metal-stimulated synthesis, particularly for Cu and Cd. In summary, whereas Cd and Cu treatments both stressed cells and slowed down primary metabolism to differing extents, Zn has a stimulating action on several physiological and biochemical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号