首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
The exchange of an alanine with a proline residue in position 31 of the loop region of the dimeric 4-alpha-helical-bundle protein ROP causes a reduction in the alpha-helix content of 7% and a reduction in stability of about 40% compared to the wild type parameters. The Gibbs energy of unfolding by denaturants extrapolated linearly to zero denaturant concentration, delta G0D (buffer, 25 degrees C), has been determined to be 43 kJ (mol dimer)-1. The corresponding ROPwt value is 72 kJ (mol dimer)-1 (Steif et al., 1993). The extrapolated delta G0D values obtained from urea and GdmHCI un- and refolding studies are identical within error limits. Deconvolution of the stability values into enthalpy and entropy terms resulted in the following parameters. At T1/2 = 43 degrees C (Cprotein = 0.05 mg.ml-1) the ROP A31P mutant is characterized by delta Hv.H.0 = 272 kJ (mol dimer)-1, delta Cp = 7.2 kJ (mol dimer)-1 K-1, delta S0 = 762 J (mol dimer)-1 K-1. These parameters are only approximately 50% as large as the corresponding values of ROPwt. We assume that the significant reduction in stability reflects the absence of at least one hydrogen bond as well as deformation of the protein structure. This interpretation is supported by the reduction in the change in heat capacity observed for the A31P mutant relative to ROPwt, by the increased aggregation tendency of the mutant and by the reduced specific CD absorption at 222 nm. All results support the view that in the case of ROP protein the loop region plays a significant role in the maintenance of native structure and conformational stability.  相似文献   

2.
cAMP receptor protein (CRP) is involved in regulation of expression of several genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two distinct structural domains. The mechanism of the biological activity of the protein may involve the interaction between the subunits and domains. In order to determine the interaction between the subunits or domains of CRP, we have studied the reversible denaturation of the protein by guanidine hydrochloride. The unfolding and refolding kinetics of CRP was monitored using stopped-flow fluorescence spectroscopy at 20 degrees C and pH 7.9. The results of CRP denaturation indicate that the transition can be described by a three-state model: (CRP native)2<=> 2 (CRP native)<=>2 (CRP denatured). The faster process, characterized by the relaxation time tau 2 = 80 +/- 3 ms, corresponds to the dissociation of CRP dimer into monomers. The slower process has the relaxation time tau t = 1.9 +/- 0.1 s and corresponds to the cooperative unfolding of CRP monomer. The free energy change in the absence of denaturant upon CRP dissociation is delta G dis degrees = 46.9 +/- 2.5 kJ/mol and for monomer unfolding delta G unf degrees = 30.9 +/- 1.3 kJ/mol. The thermal unfolding of CRP was studied by circular dichroism and fluorescence spectroscopy at various guanidine hydrochloride concentrations. It has been found that the native protein is maximally stable at about 21 +/- 0.3 degrees C and is denatured upon heating and cooling from this temperature. The apparent free energy change for CRP unfolding at 21 degrees C is equal to 30.5 +/- 0.4 kJ/mol and the apparent specific heat change is equal to delta Cp, app = 10.7 +/- 0.7 kJ mol-1 K-1. The predicted values of cold denaturation midpoint is equal to tau G = -18.8 +/- 1.5 degrees C and for high-temperature transition tau G = 63.1 +/- 1.5 degrees C. The predicted midpoint of high-temperature unfolding transition is about the same as determined experimentally.  相似文献   

3.
The structural and energetic perturbations caused by cavity-creating mutations (Leu-41-->Val and Leu-41-->Ala) in the dimeric 4-alpha-helical-bundle protein ROP have been characterized by CD spectroscopy and differential scanning calorimetry (DSC). Deconvolution of the CD spectra showed a decrease in alpha-helicity as a result of the amino acid exchanges that follows qualitatively the overall decrease in conformational stability. Transition enthalpies are sensitive probes of the energetic change associated with point mutations. delta H zero values at the respective transition temperatures, T 1/2 (71.0, 65.3, and 52.9 degrees C at 0.5 mg/ml) decrease from 580 +/- 20 to 461 +/- 20 kJ/(mol of dimer) and 335 +/- 20 kJ/(mol of dimer) for wild-type ROP (Steif, C., Weber, P., Hinz, H.-J., Flossdorf, J., Cesareni, G., Kokkinidis, M. Biochemistry 32:3867-3876, 1993), L41V, and L41A, respectively. The conformational stabilities at 25 degrees C expressed by the standard Gibbs energies of denaturation, delta GzeroD, are 71.7, 61.1, and 46.1 kJ/(mol of dimer). The corresponding transition enthalpies have been obtained from extrapolation using the cDp(T) and cNp(T) functions. Their values at 25 degrees C are 176.3, 101.9, and 141.7 kJ/(mol of dimer) for wild-type ROP, L41V, and L41A, respectively. When the stability perturbation resulting from the cavity creating mutations is referred to the exchange of 1 mol of CH2 group, the average delta delta GzeroD value is -5.0 +/- 1 kJ/(mol of CH2 group). This decrease in conformation stability suggests that dimeric ROP exhibits the same susceptibility to Leu-->Val and Leu-->Ala exchanges as small monomeric proteins. Careful determinations of the partial specific heat capacities of wild-type and mutated protein solutions suggest that the mutational effects are predominantly manifested in the native rather than the unfolded state.  相似文献   

4.
The effect of a structural change of ribose to deoxyribose, by replacement of 2'-OH by 2'-H, on the conformational equilibrium of the sugar ring is described in terms of one thermodynamic cycle. The method is based on the observation that conformational correlations of the sugar ring--side chain ensemble in DNA and RNA components show one general pattern, reflecting an intrinsic physical property of this ensemble. The pattern determines a choice of model systems to study. The systems consist of pairs of DNA and RNA components, nucleosides and nucleotides in aqueous solution, where all conformational factors are fully controlled. This approach allowed us to describe the thermodynamic cycle and measure its fundamental parameters, equilibrium constants and free energy differences, delta delta G, from a nuclear magnetic resonance study. The delta delta G values as determined for pairs of ribo- and deoxyribo-nucleosides in classes of syn-constrained and anti-preferred models, are comparable and lie in a narrow range, delta delta G = 1.7 +/- 0.1 [kJ/mol]. For pairs of ribo- and deoxyribo-nucleotides, the delta delta G values also lie in narrow ranges, delta delta G = 1.7 +/- 0.1 [kJ/mol] for 5'-phosphate nucleotides and delta delta G = 1.9 +/- 0.1 [kJ/mol] for 3'-phosphate nucleotides, i.e. similar to those observed for nucleosides. The measured quantity, delta delta G, is generally observed in a relatively narrow range, delta delta G = 1.75 +/- 0.15 [kJ/mol], irrespective of the class of the model system. This quantity represents a "pure" constant contribution, pe one sugar moiety, as a "driving force" for the N-->S shift in the sugar ring conformational equilibrium, when one compares RNA and DNA. This important thermodynamic quantity, delta delta G, has not hitherto been determined for nucleic acids. Ultimately the delta delta G quantity is revealed in the tendency to adopt S(C2'endo) sugar puckering domain by the majority of DNA structures, whereas RNA generally adopt an N(C3'endo) puckering domain. A possible biological significance of the delta delta G quantity may include evolutionary aspects of nucleic acids.  相似文献   

5.
We investigated the binding of octenoyl-CoA to pig kidney medium chain acyl-CoA dehydrogenase (MCAD) by isothermal titration microcalorimetry under a variety of experimental conditions. At 25 degrees C in 50 mM phosphate buffer at pH 7.6 (ionic strength of 175 mM), the binding is characterized by the stoichiometry (n) of 0.89 mole of octenoyl-CoA/(mole of MCAD subunit), delta G = -8.75 kcal/mol, delta H = -10.3 kcal/mol, and delta S = -5.3 cal mol(-1) K(-1), suggesting that formation of MCAD-octenoyl-CoA is enthalpically driven. By employing buffers with various ionization enthalpies, we discerned that formation of the MCAD-octenoyl-CoA complex, at pH 7.6, accompanies abstraction (consumption) of 0.52 +/- 0.15 proton/(MCAD subunit) from the buffer media. We studied the effects of pH, ionic strength, and temperature on the thermodynamics of MCAD-octenoyl-CoA interaction. Whereas the ionic strength does not significantly influence the above interaction, the pH of the buffer media exhibits a pronounced effect. The pH dependence of the association constant of MCAD +octenoyl-CoA <==> MCAD-octenoyl-CoA yields a pKa for the free enzyme of 6.2. Among thermodynamic parameters, whereas delta G remains invariant as a function of temperature, delta H and deltaS(standard) both decrease with an increase in temperature. At temperatures of < 25 degrees C, delta G is dominated by favorable entropic contributions. As the temperature increases, the entropic contributions progressively decrease, attain a value of zero at 23.8 degrees C, and then becomes unfavorable. During this transition, the enthalpic contributions become progressively favorable, resulting in an enthalpy-entropy compensation. The temperature dependence of delta H yields the heat capacity change (delta Cp(0)) of -0.37 +/- 0.05 kcal mol(-1) K(-1), attesting to the fact that the binding of octenoyl-CoA to MCAD is primarily dominated by the hydrophobic forces. The thermodynamic data presented herein are rationalized in light of structural-functional relationships in MCAD catalysis.  相似文献   

6.
Thermal and chemical unfolding of lipid-free apolipoprotein C-1 (apoC-1), a 6-kDa protein component of very low density and high-density lipoproteins, was analyzed by far-UV CD. In neutral 1 mM Na2HPO4 solutions containing 6-7 micrograms/mL protein, the apoC-1 monomer is approximately 30% alpha-helical at 0-22 degrees C and unfolds reversibly from about 22-80 degrees C with Tm = 51 +/- 3 degrees C and van't Hoff enthalpy delta Hv(Tm) = 19 +/- 3 kcal/mol. The apparent free energy of the monomer stabilization determined from the chemical unfolding at 0 degree C, delta G(0 degree C) = 2.8 +/- 0.8 kcal/mol, decreases by about 1 kcal/mol upon heating to 25 degrees C. A small apparent heat capacity increment suggests the absence of a substantial hydrophobic core for the apoC-1 molecule. At pH 7, increasing apoC-1 concentration above 10 micrograms/mL leads to self-association and formation of additional alpha-helices that unfold upon both heating and cooling from room temperature. The CD data indicate that the high-temperature transition reflects a complete monomer unfolding and the low-temperature transition reflects oligomer dissociation into stable monomers. This suggests the importance of hydrophobic interactions for apoC-1 self-association. Close proximity between the high- and low-temperature transitions and the absence of a plateau in the chemical unfolding curves recorded from oligomeric apoC-1 indicate marginal oligomer stability and suggest that in vivo apoC-1 transfer is mediated via the complexes with other apolipoproteins and/or lipids.  相似文献   

7.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

8.
The gene encoding the human erythrocyte form of cytochrome b5 (97 residues in length) has been prepared by mutagenesis of an expression vector encoding lipase-solubilized bovine liver microsomal cytochrome b5 (93 residues in length) (Funk et al., 1990). Efficient expression of this gene in Escherichia coli has provided the first opportunity to obtain this protein in quantities sufficient for physical and functional characterization. Comparison of the erythrocytic cytochrome with the trypsin-solubilized bovine liver cytochrome b5 by potentiometric titration indicates that the principal electrostatic difference between the two proteins results from two additional His residues present in the human erythrocytic protein. The midpoint reduction potential of this protein determined by direct electrochemistry is -9 +/- 2 mV vs SHE at pH 7.0 (mu = 0.10 M, 25.0 degrees C), and this value varies with pH in a fashion that is consistent with the presence of a single ionizable group that changes pKa from 6.0 +/- 0.1 in the ferricytochrome to 6.3 +/- 0.1 in the ferrocytochrome with delta H degrees = -3.2 +/- 0.1 kcal/mol and delta S degrees = -11.5 +/- 0.3 eu (pH 7.0, mu = 0.10). The 1D 1H NMR spectrum of the erythrocytic ferricytochrome indicates that 90% of the protein binds heme in the "major" orientation and 10% of the protein binds heme in the "minor" orientation (pH 7.0, 25 degrees C) with delta H degrees = -2.9 +/- 0.3 kcal/mol and delta S degrees = -5.4 +/- 0.9 eu for this equilibrium.  相似文献   

9.
The ROP loop excision mutant RM6 shows dramatic changes in structure and stability in comparison to the wild-type protein. Removal of the five amino acids (Asp30, Ala31, Asp32, Glu33, Gln34) from the loop results in a complete reorganization of the protein as evidenced by single crystal X-ray analysis and thermodynamic unfolding studies. The homodimeric four-alpha-helix motif of the wild-type structure is given up. Instead a homotetrameric four-alpha-helix structure with extended, loop-free helical monomers is formed. This intriguing structural change is associated with the acquisition of hyperthermophilic stability. This is evident in the shift in transition temperature from 71 degreesC characteristic of the wild-type protein to 101 degreesC for RM6. Accordingly the Gibbs energy of unfolding is increased from 71.7 kJ (mol of dimer)-1 to 195.1 kJ (mol of tetramer)-1. The tetramer-to-monomer transition proceeds highly cooperatively involving an enthalpy change of DeltaH=1073+/-30 kJ (mol of tetramer)-1 and a heat capacity change at the transition temperature of DeltaDNCp=14.9(+/-)3% kJ (mol of tetramerxK)-1. The two-state nature of the unfolding reaction is reflected in coinciding calorimetric and van't Hoff enthalpy values.  相似文献   

10.
This is a study of the effects of temperature (in the range 273.3-307.7 K) and of ionic strength (in the range 2.5-100 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II)--> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. In order to separate direct and indirect effects of temperature on the rate constants, viscosity of the solutions was fixed, at different values, by additions of sucrose. The activation parameters for the reaction within the preformed complex, at the low ionic strength, are delta H++ = 13 +/- 2 kJ/mol and delta S++ = -97 +/- 4 J/K mol. The activation parameters for the reaction within the encounter complex, at the higher ionic strength, are delta H++ = 13 +/- 1 kJ/mol and delta S++ = -96 +/- 3 J/K mol. Evidently, the two complexes are the same. The proteins associate similarly in the persistent and the transient complex, i.e., at different ionic strengths. In both complexes, however, electron transfer is gated by a rearrangement, as previous studies from this laboratory showed. Changes in the solution viscosity modulate this rearrangement by affecting delta H++, not delta S++. The activation parameters are analyzed by empirical methods. The thermodynamic parameters delta H and delta S for the formation of the complex Zncyt/pc(II) are determined and related to changes in hydrophilic and hydrophobic surfaces upon protein association in three configurations. A difference between the values of delta H for the configuration providing optimal electronic coupling between the redox sites and the configuration providing optimal docking equals the experimental value delta H++ = 13 kJ/mol for the rearrangement of the latter configuration into the former. Enthalpy of activation may reflect a change in the character of the exposed surface as the diprotein complex rearranges. Entropy of activation may reflect tightening of the contact between the associated proteins.  相似文献   

11.
A surfactant-induced conformational transition of bovine insulin has been detected by difference spectroscopy for a homologous series of n-alkytrimethylammonium bromides, chain length C10-C16 at pH 10.0, 25 degrees C. The transition was followed as a function of surfactant concentration by absorbance measurements at 275 nm and the data were analysed to obtain the Gibbs energy of the transition in water (delta Gw degree) and in a hydrophobic environment (delta Ghc degree) for saturated protein-surfactant complexes. A value of delta Gw degree of -11.8 +/- 1.8 kJ mol-1 was found independent of n-alkyl chain length, which is similar to the value found for the n-alkylsulfate-induced transition in a previous study (-14.6 +/- 3.0 kJ mol-1). The values of delta Ghc degree were in the range approximately -88 to -100 kJ mol-1 for chain lengths from C10 to C16. The values of delta Ghc degree vs. chain length for both the n-alkyltrimethylammonium bromides and the n-alkylsulfates lie on the same curve, demonstrating that delta Ghc degree is independent of the nature of the surfactant head group.  相似文献   

12.
Laser-induced optoacoustic measurements were performed with bovine rhodopsin in the temperature range 5-32 degrees C in its natural environment (i.e., in washed membranes) as well as solubilized in dodecyl-beta-D-maltoside. A signal deconvolution procedure using a simple sequential kinetic scheme for the photobaric time evolution revealed, in the case of the washed membranes, the presence of an intermediate with a 14-ns lifetime at 25 degrees C, of the same order as that reported for the BSI intermediate in solubilized rhodopsin (Hug, S. J., W. J. Lewis, C. M. Einterz, T. E. Thorgeirsson, and D. S. Kliger. 1990. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate. Biochemistry. 29:1475-1485), with an energy content of (85 +/- 20) kJ/mol, and accompanied by an expansion of 26 +/- 3 ml/mol. The difference in energy content between BSI and the next transient lumi was estimated in only -1 +/- 5 kJ/mol, concomitant with an expansion of 9 +/- 3 ml/mol. Thus, this transition, which according to literature involves an equilibrium, should be controlled by an entropic change, rather than by an enthalpic difference. This is supported by the fact that both activation parameters for the decay of batho and BSI decrease upon solubilization. For detergent-solubilized rhodopsin, two time constants were enough to fit the sample signal. A short lifetime ascribable to BSI was not detected in this case. For the first intermediate (probably batho in equilibrium with BSI), an energy content of 50 +/- 20 kJ/mol and an expansion of 20 +/- 1 ml/mol, and for lumi an energy content of 11 +/- 20 kJ/mol and a further expansion of 11 +/- 2 ml/mol were determined. Thus, the intermediates of the membrane-embedded form of rhodopsin (in contrast to solubilized samples) are kept in a higher energy level, although the total expansion from rhodopsin to lumi is similar for both conditions (35 +/- 6 and 31 +/- 3 ml/mol). The expansions are interpreted as protein reorganization processes as a consequence of the photoisomerization of the chromophore. As a result, weak interactions are probably perturbed and the protein gains conformational flexibility.  相似文献   

13.
Flash-induced absorption changes at 355 nm were measured at different temperatures within the range of 2 degrees C S2) = 14 kJ/mol, EA(S2-->S3) = 35 kJ/mol, and EA(S3-->-->S0 + O2) = 21 kJ/mol for theta > 11 degrees C, 67 kJ/mol for theta < 11 degrees C in PS II core complexes dissolved in H2O; (b) replacement of exchangeable protons by deuterons causes only minor changes ( S2, S2 --> S3, and S3 -->--> S0 + O2, respectively. The corresponding values of PS II membrane fragments are 1.3, 1.3, and 1. 4. Based on these results and corresponding EA data reported in the literature for PS II membrane fragments from spinach [Renger, G., & Hanssum, B. (1992) FEBS Lett. 299, 28-32] and PS II particles from the thermophilic cyanobacterium Synechococcus vulcanus Copeland [Koike, H., Hanssum, B., Inoue, Y., & Renger, G. (1987) Biochim. Biophys. Acta 893, 524-533], the reaction coordinate of the redox sequence in the WOC is inferred to be almost invariant to the evolutionary development from cyanobacteria to higher plants. Furthermore, the rather high activation energy of the S2 --> S3 transition provides evidence for a significant structural change coupled with this reaction. Implications for the mechanism of photosynthetic water oxidation are discussed.  相似文献   

14.
The conformational stability (delta G) of muscle acylphosphatase, a small alpha/beta globular protein, has been determined as a function of temperature, urea concentration, and pH. A combination of thermally induced and urea-induced unfolding, monitored by far-UV circular dichroism, was used to define the conformational stability over a wide range of temperature. Through analysis of all these data, the heat capacity change upon unfolding (delta Cp) could be estimated, allowing the determination of the temperature dependence of the main thermodynamic functions (delta G, delta H, delta S). Thermal unfolding in the presence of urea made it possible to extend such thermodynamic analysis to examine these parameters as a function of urea concentration. The results indicate that acylphosphatase is a relatively unstable protein with a delta G(H2O) of 22 +/- 1 kJ mol-1 at pH 7 and 25 degrees C. The midpoints of both thermal and chemical denaturation are also relatively low. Urea denaturation curves over the pH range 2-12 have allowed the pH dependence of delta G to be determined and indicate that the maximum stability of the protein occurs near pH 5.5. While the dependence of delta G on urea (the m value) does not vary with temperature, a significant increase has been found at low pH values, suggesting that the overall dimensions of the unfolded state are significantly affected by the number of charges within the polypeptide chain. The comparison of these data with those from other small proteins indicates that the pattern of conformational stability is defined by individual sequences and not by the overall structural fold.  相似文献   

15.
We have characterized the guanidine-induced denaturation of hen egg white lysozyme within the 30-75 degrees C temperature range on the basis of equilibrium fluorescence measurements, unfolding assays, kinetic fluorescence measurements, and differential scanning calorimetry. Analysis of the guanidine denaturation profiles according to the linear extrapolation method yields values for the denaturation Gibbs energy which are about 15 kJ/mol lower than those derived from differential scanning calorimetry. Our results strongly suggest that this discrepancy is not due to deviations from the two-state denaturation mechanism. We propose a new method for the determination of denaturation Gibbs energies from solvent-denaturation data (the constant-delta G extrapolation procedure). It employs several solvent-denaturation profiles (obtained at different temperatures) to generate the protein stability curve at zero denaturant concentration within the -8 to 8 kJ/mol delta G range. The method is model-independent and provides a practical, nonlinear alternative to the commonly employed linear extrapolation procedure. The application of the constant-delta G method to our data suggests that the guanidine-concentration dependence of the denaturation Gibbs energy is approximately linear over an extended concentration range but, also, that strong deviations from linearity may occur at low guanidine concentrations. We tentatively attribute these deviations to the abrupt change of the contribution to protein stability that arises from pairwise charge-charge electrostatic interactions. This contribution may be positive, negative, or close to zero, depending on the pH value and the charge distribution on the native protein surface [Yang, A.-S., & Honig, B. (1993) J. Mol. Biol. 231, 459-474], which may help to explain why disparate effects have been found when studying protein denaturation at low guanidine concentrations. Kinetic m values for lysozyme denaturation depend on temperature, in a manner which appears consistent with Hammond behavior.  相似文献   

16.
The standard enthalpy of ionization of six titratable histidines in horse metaquomyoglobin was determined by repeating proton NMR titrations as a function of temperature and using the van't Hoff relationship. It was found that deltaH degrees varies between 16 and 37 kJ mol(-1) in the protein, compared with a value of 29 kJ mol(-1) in free histidine. The standard entropy change was evaluated by combining the enthalpy and free energy changes derived from the pKa values. Although the entropy change could not be precisely and accurately obtained by this method, it could be established that it spans a wide range, from -60 to 0 J K(-1) mol(-1), about the value of -23 J K(-1) mol(-1) for the free histidine. The entropy change was used within the framework of enthalpy-entropy compensation to partition the solvation component from the standard thermodynamic quantities for each of the titrating residues. It was shown that the partitioning of the values in the protein is not readily understood in terms of solvent accessibility or electrostatic interactions. The contribution of solvation effects to the temperature response appeared to be significant only in the case of His-119 and His-48. The standard quantities were also used to explore the energetics of proton binding in the native state at temperatures below the onset of thermal denaturation.  相似文献   

17.
Titration calorimetry measurements on the binding of hen lysozyme to the specific monoclonal IgG antibodies D1.3, D11.15, D44.1, F9.13.7, F10.6.6, their papain-cleaved antigen binding fragments (Fab) and their protein-engineered fragments consisting of non-covalently linked heavy variable chain and light variable chain domains (Fv) were performed between 6-50 degrees C in 0.15 M NaCl, 0.01 M sodium phosphate pH 7.1. The binding thermodynamic free energy change (delta G degrees b), enthalpy change (delta Hb), and entropy change (delta Sb) were the same for the whole IgG and its Fv and Fab fragments. With the exception of F9.13.7 at 13 degrees C, all the binding reactions were enthalpically driven with enthalpy changes ranging from -129 +/- 7 kJ mol-1 (D1.3 at 49.8 degrees C) to -26.2 +/- 0.6 kJ mol-1 (D44.1 at 8.0 degrees C). The heat capacity changes for the binding reaction (delta Cp) ranged from -2.72 +/- 0.16 kJ mol-1 K-1 (F9.13.7) to -0.95 +/- 0.06 kJ mol-1 K-1 (F10.6.6). The apolar surface areas buried at the binding sites estimated from the heat capacity changes indicate that the binding reactions are primarily hydrophobic, contrary to the mainly observed enthalpy-driven nature of the reactions. Conformational stabilization and the presence of water at the antigen-antibody interface may account for this discrepancy.  相似文献   

18.
Differential scanning calorimetry has been used to study the thermal stability and oligosaccharide-binding thermodynamics of the N-terminal cellulose-binding domain of Cellulomonas fimi beta-1,4-glucanase CenC (CBDN1). CBDN1 has a relatively low maximum stability (delta Gmax = 33 kJ/mol = 216 J/residue at 1 degree C and pH 6.1) compared to other small single-domain globular proteins. The unfolding is fully reversible between pH 5.5 and 9 and in accordance with the two-state equilibrium model between pH 5.5 and 11. When the single disulfide bond in CBDN1 is reduced, the protein remains unfolded at all conditions, as judged by NMR spectroscopy. This indicates that the intramolecular cross-link makes a major contribution to the stability of CBDN1. The measured heat capacity change of unfolding (delta Cp = 7.5 kJ mol-1 K-1) agrees well with that calculated from the predicted changes in the solvent accessible nonpolar and polar surface areas upon unfolding. Extrapolation of the specific enthalpy and entropy of unfolding to their respective convergence temperature indicates that per residue unfolding energies for CBDN1, an isolated domain, are in accordance with those found by Privalov (1) for many single-domain globular proteins. DSC thermograms of the unfolding of CBDN1 in the presence of various concentrations of cellopentaose were fit to a thermodynamic model describing the linkage between protein-ligand binding and protein unfolding. A global two-dimensional minimization routine is used to regress the binding enthalpy, binding constant, and unfolding thermodynamics for the CBDN1-cellopentaose system. Extrapolated binding constants are in quantitative agreement with those determined by isothermal titration calorimetry at 35 degrees C.  相似文献   

19.
The kinetic mechanisms of the binding to tubulin of colchicine and eight different analogues have been studied to elucidate details of the recognition mechanism. All of the analogues follow a two step binding mechanism i.e. binding occurs via an initial step with low affinity, followed by an isomerisation of the initial complex leading to the final high affinity state. For several analogues the kinetic and thermodynamic data of both processes are compared here. For all the analogues the delta G1 degree of initial binding at 25 degrees C varies between -13.3 and -28.8 kJ. mol-1. For the second step delta G2 degrees varies between -2.4 and -27 kJ. mol-1. These limited ranges of free energy change are, however, obtained by a great variety of enthalpy changes and compensatory entropy changes. Comparison of the data for the first and second steps indicates that structural alterations of the drugs always change the thermodynamic parameters of the two steps, and the changes in the first and the second steps are in opposite directions. The fact that this range of experimental behaviour can be incorporated into a general mechanism encourages the extension of these investigations to other colchicine analogues and related compounds with potential pharmaceutical applications.  相似文献   

20.
An obvious difficulty of the study of binding of volatile anesthetics to proteins is to prevent loss of the ligand during the procedure. A novel NMR tube was designed that consists of concentric double cylinders which slide each other under sealed condition. A gas space is left in the tube to measure the free anesthetic concentration in the gas phase, which is in equilibrium with the solution. The enthalpy change of anesthetic transfer from water to BSA, deltaH(w-->r) was -40 kJ x mol(-1). The Gibbs free energy deltaG(w-->r) was -14.0 kJ x mol(-1) at 283 K (K(D) = 2.6 mM) and increased to -11.6 kJ x mol(-1) at 310 K (K(D) = 10.9 mM). The maximum binding site (Bmax) was 19.3 at 10 degrees C and increased to 34.5 at 37 degrees C. The entropy change, deltaS(w-->r) was -92 J x mol(-1) x K(-1) and was almost constant in the temperature range 10 approximately 37 degrees C. Contrary to the general consensus that hydrophobic interaction is entropy-driven, the binding of halothane to BSA was enthalpy-driven, compensating the opposing effect of deltaS with negative deltaH at the biologically meaningful temperature range. Possible cause of the negative deltaS relating to the conformational change of BSA is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号