首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Output-Sensitive Reporting of Disjoint Paths   总被引:1,自引:0,他引:1  
A k -path query on a graph consists of computing k vertex-disjoint paths between two given vertices of the graph, whenever they exist. In this paper we study the problem of performing k -path queries, with , in a graph G with n vertices. We denote with the total length of the reported paths. For , we present an optimal data structure for G that uses O(n) space and executes k -path queries in output-sensitive time. For triconnected planar graphs, our results make use of a new combinatorial structure that plays the same role as bipolar (st ) orientations for biconnected planar graphs. This combinatorial structure also yields an alternative construction of convex grid drawings of triconnected planar graphs. Received August 24, 1996; revised April 8, 1997.  相似文献   

2.
RL \subseteq SC     
We show that any randomized logspace algorithm (running in polynomial time with bounded two-sided error) can be simulated deterministically in polynomial time andO(log2 n) space. This puts RL in SC, Steve's Class In particular, we get a polynomial time,O(log2 n) space algorithm for thest-connectivity problem on undirected graphs.Subject classifications. 68Q10, 68Q15, 68Q25.  相似文献   

3.
View ann-vertex,m-edge undirected graph as an electrical network with unit resistors as edges. We extend known relations between random walks and electrical networks by showing that resistance in this network is intimately connected with thelengths of random walks on the graph. For example, thecommute time between two verticess andt (the expected length of a random walk froms tot and back) is precisely characterized by the effective resistanceR st betweens andt: commute time=2mR st . As a corollary, thecover time (the expected length of a random walk visiting all vertices) is characterized by the maximum resistanceR in the graph to within a factor of logn:mR<-cover time<-O(mRlogn). For many graphs, the bounds on cover time obtained in this manner are better than those obtained from previous techniques such as the eigenvalues of the adjacency matrix. In particular, we improve known bounds on cover times for high-degree graphs and expanders, and give new proofs of known results for multi-dimensional meshes. Moreover, resistance seems to provide an intuitively appealing and tractable approach to these problems.  相似文献   

4.
在EREW PRAM(exclusive-read and exclusive-write parallel random access machine)并行计算模型上,对范围很广的一类无向图的边极大匹配问题,给出时间复杂性为O(logn),使用O((n+m)/logn)处理器的最佳、高速并行算法.  相似文献   

5.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

6.
We present parallel algorithms for computing all pair shortest paths in directed graphs. Our algorithm has time complexityO(f(n)/p+I(n)logn) on the PRAM usingp processors, whereI(n) is logn on the EREW PRAM, log logn on the CCRW PRAM,f(n) iso(n 3). On the randomized CRCW PRAM we are able to achieve time complexityO(n 3/p+logn) usingp processors. A preliminary version of this paper was presented at the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, June 1992. Support by NSF Grant CCR 90-20690 and PSC CUNY Awards #661340 and #662478.  相似文献   

7.
Two algorithms for shortest path problems are presented. One is to find the all-pairs shortest paths (APSP) that runs in O(n 2logn + nm) time for n-vertex m-edge directed graphs consisting of strongly connected components with O(logn) edges among them. The other is to find the single-source shortest paths (SSSP) that runs in O(n) time for graphs reducible to the trivial graph by some simple transformations. These algorithms are optimally fast for some special classes of graphs in the sense that the former achieves O(n 2) which is a lower bound of the time necessary to find APSP, and that the latter achieves O(n) which is a lower bound of the time necessary to find SSSP. The latter can be used to find APSP, also achieving the running time O(n 2).  相似文献   

8.
Representation of graphs   总被引:1,自引:0,他引:1  
Summary Given a formulation of a problem, a compact representation is required both for theoretical purposes — measuring the complexity of algorithms, and for practical purposes — data compression.The adjacency lists method for representing graphs is compared to the information theoretic lower bounds, and it is shown to be optimal in many instances. For n-vertex labeled planar graphs the adjacency lists method requires 3nlogn + O(n) bits, a linear algorithm is presented to obtain a 3/2nlogn + O(n) representation while nlogn + O(n) is shown to be the minimum.  相似文献   

9.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

10.
Lempel, Even and Cederbaum proved the following result: Given any edge {st} in a biconnected graph G with n vertices, the vertices of G can be numbered from 1 to n so that vertex s receives number 1, vertex t receives number n, and any vertex except s and t is adjacent both to a lower-numbered and to a higher-numbered vertex (we call such a numbering an st-numbering for G). They used this result in an efficient algorithm for planarity-testing. Here we provide a linear-time algorithm for computing an st-numbering for any biconnected graph. This algorithm can be combined with some new results by Booth and Lueker to provide a linear-time implementation of the Lempel-Even-Cederbaum planarity-testing algorithm.  相似文献   

11.
The main results of this paper are efficient parallel algorithms, MSP and LOCATE, for computing minimal spanning trees and locating minimal paths in directed graphs, respectively. Algorithm MSP has time complexityO(log3 n) usingO(n 3/logn) processors, while LOCATE has time complexityO(logn) usingO(n 2) processors. Algorithm MSP is derived from sequential algorithms, when the unbounded parallelism model is used.  相似文献   

12.
We present an algorithm for maintaining the biconnected components of a graph during a sequence of edge insertions and deletions. It requires linear storage and preprocessing time. The amortized running time for insertions and for deletions isO(m 2/3 ), wherem is the number of edges in the graph. Any query of the form ‘Are the verticesu andv biconnected?’ can be answered in timeO(1). This is the first sublinear algorithm for this problem. We can also output all articulation points separating any two vertices efficiently. If the input is a plane graph, the amortized running time for insertions and deletions drops toO(√n logn) and the query time isO(log2 n), wheren is the number of vertices in the graph. The best previously known solution takes timeO(n 2/3 ) per update or query.  相似文献   

13.
We improve upon the running time of several graph and network algorithms when applied to dense graphs. In particular, we show how to compute on a machine with word size = (logn) a maximal matching in ann-vertex bipartite graph in timeO(n 2+n 2.5/)=O(n 2.5/logn), how to compute the transitive closure of a digraph withn vertices andm edges in timeO(n 2+nm/), how to solve the uncapacitated transportation problem with integer costs in the range [O.C] and integer demands in the range [–U.U] in timeO ((n 3 (log log/logn)1/2+n2 logU) lognC), and how to solve the assignment problem with integer costs in the range [O.C] in timeO(n 2.5 lognC/(logn/loglogn)1/4).Assuming a suitably compressed input, we also show how to do depth-first and breadth-first search and how to compute strongly connected components and biconnected components in timeO(n+n 2/), and how to solve the single source shortest-path problem with integer costs in the range [O.C] in time0 (n 2(logC)/logn). For the transitive closure algorithm we also report on the experiences with an implementation.Most of this research was carried out while both authors worked at the Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany. The research was supported in part by ESPRIT Project No. 3075 ALCOM. The first author acknowledges support also from NSERC Grant No. OGPIN007.  相似文献   

14.
D. Harel  M. Sardas 《Algorithmica》1998,20(2):119-135
We present a new algorithm for drawing planar graphs on the plane. It can be viewed as a generalization of the algorithm of Chrobak and Payne, which, in turn, is based on an algorithm by de Fraysseix, Pach, and Pollack. Our algorithm improves the previous ones in that it does not require a preliminary triangulation step; triangulation proves problematic in drawing graphs ``nicely,' as it has the tendency to ruin the structure of the input graph. The new algorithm retains the positive features of the previous algorithms: it embeds a biconnected graph of n vertices on a grid of size (2n-4) x (n-2) in linear time. We have implemented the algorithm as part of a software system for drawing graphs nicely. Received September 21, 1995; revised March 15, 1996.  相似文献   

15.
C. C. McGeoch 《Algorithmica》1995,13(5):426-441
The essential subgraph H of a weighted graph or digraphG contains an edge (v, w) if that edge is uniquely the least-cost path between its vertices. Let s denote the number of edges ofH. This paper presents an algorithm for solving all-pairs shortest paths onG that requires O(ns+n2 logn) worst-case running time. In general the time is equivalent to that of solvingn single-source problems using only edges inH. For general models of random graphs and digraphsG, s=0(n logn) almost surely. The subgraphH is optimal in the sense that it is the smallest subgraph sufficient for solving shortest-path problems inG. Lower bounds on the largest-cost edge ofH and on the diameter ofH andG are obtained for general randomly weighted graphs. Experimental results produce some new conjectures about essential subgraphs and distances in graphs with uniform edge costs.Much of this research was carried out while the author was a Visiting Fellow at the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS).  相似文献   

16.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

17.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

18.
This paper concerns the communication primitives of broadcasting (one-to-all communication) and gossiping (all-to-all communication) in known topology radio networks, i.e., where for each primitive the schedule of transmissions is precomputed in advance based on full knowledge about the size and the topology of the network. The first part of the paper examines the two communication primitives in arbitrary graphs. In particular, for the broadcast task we deliver two new results: a deterministic efficient algorithm for computing a radio schedule of length D + O(log3 n), and a randomized algorithm for computing a radio schedule of length D + O(log2 n). These results improve on the best currently known D + O(log4 n) time schedule due to Elkin and Kortsarz (Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 222–231, 2005). Later we propose a new (efficiently computable) deterministic schedule that uses 2D + Δlog n + O(log3 n) time units to complete the gossiping task in any radio network with size n, diameter D and max-degree Δ. Our new schedule improves and simplifies the currently best known gossiping schedule, requiring time , for any network with the diameter D = Ω(log i+4 n), where i is an arbitrary integer constant i ≥ 0, see Gąsieniec et al. (Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, vol. 3104, pp. 173–184, 2004). The second part of the paper focuses on radio communication in planar graphs, devising a new broadcasting schedule using fewer than 3D time slots. This result improves, for small values of D, on the currently best known D + O(log3 n) time schedule proposed by Elkin and Kortsarz (Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 222–231, 2005). Our new algorithm should be also seen as a separation result between planar and general graphs with small diameter due to the polylogarithmic inapproximability result for general graphs by Elkin and Kortsarz (Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, vol. 3122, pp. 105–116, 2004; J. Algorithms 52(1), 8–25, 2004). The second author is supported in part by a grant from the Israel Science Foundation and by the Royal Academy of Engineering. Part of this research was performed while this author (Q. Xin) was a PhD student at The University of Liverpool.  相似文献   

19.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before.For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only.Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.This research was supported by National Science Foundation Grant DCR-85-03251 and Office of Naval Research Contract N00014-80-C-0647.This research was partially supported by the National Science Foundation Grants MCS-83-00630, DCR-8503497, by the Greek Ministry of Research and Technology, and by the ESPRIT Basic Research Actions Project ALCOM.  相似文献   

20.
In this paper we describe a technique for finding efficient parallel algorithms for problems on directed graphs that involve checking the existence of certain kinds of paths in the graph. This technique provides efficient algorithms for finding dominators in flow graphs, performing interval and loop analysis on reducible flow graphs, and finding the feedback vertices of a digraph. Each of these algorithms takesO(log2 n) time using the same number of processors needed for fast matrix multiplication. All of these bounds are for an EREW PRAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号