首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为揭示上流式厌氧反应器(UASB)改性污泥处理含铬废水过程中硫酸根还原与化学需氧量(COD)的去除、微生物增长之间的定量关系,在合理的假设及分析下,通过理论推导建立了COD降解与硫酸根还原的动力学模型,并通过实验测得了动力学参数.用不同硫酸根浓度下UASB改性污泥体系处理含铬废水过程中的数据对所建动力学模型进行了验证,S2-的实测值和理论值拟合很好(R=0.986 7),表明所建动力学模型可以描述UASB改性污泥处理含铬废水过程.  相似文献   

2.
铝合金加工过程中含铬废水的处理   总被引:1,自引:0,他引:1  
在铝合金加工过程中产生的含铬废水中六价铬离子对人体危害很大,铁氧体法处理六价铬离子是一种无中间二次污染物,能达到一步无害化处理,处理后的废水达到了国家规定的排放标准,有显著的经济效益和环境效益。  相似文献   

3.
硫酸盐还原菌与单质铁协同作用处理酸性含锌废水   总被引:2,自引:0,他引:2  
研究利用硫酸盐还原菌(sulfate reducing bacteria,SRB)与单质铁协同作用处理含Zn2 废水的效果和相应机理。采用间歇式生物反应器,在Zn2 名义浓度为0~90 mg/L范围内,分别考察SRB和SRB Fe0两种体系的处理效果。实验表明:SRB Fe0体系的处理效果明显优于SRB体系;加入单质铁之后,高Zn2 浓度下(>75 mg/L)SRB适应期缩短20%以上;Zn2 对SRB的抑制浓度提高约20%;硫酸盐还原速率明显加快,硫酸盐最终还原率以及Zn2 的去除速率都有所提高。分析了单质铁对废水处理过程的强化机理,确定Zn2 的去除形式主要为硫化物沉淀。  相似文献   

4.
5.
循环式活性污泥工艺处理制药废水的研究   总被引:4,自引:0,他引:4  
指出抗生素类废水治理是目前生物治理的难点。笔者采用微电解法与连续性循环式活性污泥工艺相结合 ,处理抗生素类高浓度有机废水 ,进行了废水处理中试 ,处理后各项指标达到了国家规定的排放标准  相似文献   

6.
申请号:CN201310553968.2申请日:2013.11.08公开(公告)号:CN103641210A公开(公告)日:2014.03.19申请(专利权)人:华南理工大学该发明公开了一种含铬电镀废水复合电解槽处理方法。将含铬废水放入所述复合电解槽进行电解处理,外加电场提供经整流后25~27 V直流电压,反应30~35 min,电流强度为0.9~1.1 A,  相似文献   

7.
8.
现行电镀含六价铬废水(含量在每升几十毫克)的处理方法,多为分质排放后流入-还原反应池(连续生产时设两个,交替间歇处理),投加焦亚硫酸钠之类的还原剂,在pH值2.5~3.0条件下将六价铬还原为三价铬,再与其他含重金属废水混合,调高pH值,  相似文献   

9.
通过絮凝实验考察了自制疏水改性缔合聚合物(Hydrophob ically Mod ified Polym er,简称HPAM)的除油效果,对其絮凝机理进行了探讨,测试了pH值及NaC l浓度对其絮凝效果的影响,由此确定了最佳絮凝条件。研究结果表明,HPAM对于模拟含油废水在pH值为9时,加药量为0.2 mg/L的条件下絮凝效果最佳;HPAM随着盐浓度的升高,黏度增大且絮凝效果提高,表明HPAM以疏水缔合作用为主,具有较好的抗盐性。  相似文献   

10.
硫酸盐还原菌对碳钢腐蚀的影响   总被引:14,自引:1,他引:13  
采用失重法,极化曲线法和 SEM 研究了硫酸盐还原菌(SRB)诱导碳钢腐蚀的主要因素。实验结果表明,在 SRB 的代谢过程中,会产生一种挥发性的含磷化合物,它具有一定的腐蚀性,但导致碳钢腐蚀的主要因素是代谢产物中的硫化物,特别是硫化氢,以及在介质中可能大量存在的 Fe~(2 ),它们对腐蚀电化学过程有明显的去极化作用。  相似文献   

11.
剩余污泥与人造沸石复合体系去除废水中的钙离子   总被引:1,自引:0,他引:1  
采用剩余污泥与人造沸石复合体系去除废水中的Ca2 ,考察了各因素对Ca2 去除的影响。结果表明:沸石与废水的固液比是影响Ca2 去除的最关键因素,温度和pH值的影响较大,而反应时间在最初10min内影响显著,之后则影响较小;在25℃,初始pH值8.04条件下,反应1h,Ca2 的去除率随着固液比的增加而增大,初始Ca2 的质量浓度为801.60mg/L时,保持沸石与废水固液比为3:100,Ca2 的去除率达到80.38%,剩余Ca2 仅为157.31mg/L;升高温度对Ca2 去除有促进作用,Ca2 的去除率从20℃时的77.30%增大到45℃时的90.71%;Ca2 去除在最初的50min内吸附达到平衡。人造沸石的红外光谱图表明脱钙过程主要是化学吸附。  相似文献   

12.
石灰中和-生物净化处理含铍废水   总被引:5,自引:0,他引:5  
用以城市生活污水厂剩余污泥为主体的生物净化剂,探讨了石灰中和-生物净化处理含铍废水的新工艺,研究了石灰中和沉降及生物净化过程。结果表明:中和过程的pH值为8~10,可将水中的铍含量降低到100μg/L左右;铍的生物净化最优的pH值为7~10,温度为30℃左右,增大生物净化剂用量有利于铍的处理。采用净化柱连续实验,中和水中铍浓度可降至5μ/L,达到国家排放标准。净化柱中每克生物净化剂能够处理814.71μg铍。  相似文献   

13.
微波煅烧活化赤泥处理含铬废水的研究   总被引:3,自引:0,他引:3  
对山西铝厂氧化铝生产的废料赤泥.经擞波煅烧活化后,用来处理含铬废水进行了研究,探讨了徽救活化功率、活化赤泥加入量、接触时间及初始浓度等对除铬效果的影响.并对作用机理进行了分析。结果表明,活化赤泥对Cr^3+有较好的吸附作用.对Cr^6+也有一定的吸附作用。当赤泥在800W擞波活化30min后,处理含Cr^3+浓度在300mg/L以下的废水,以铬含量和活化赤泥比为1:200(质量比)的比例加入,除去率可达99%以上。对于含Cr^6+废水,采用先加入硫酸亚铁还原.再加入活化赤泥.可使含Cr^6+浓度在300mg/L以下的废水处理后达到国家排放标准。  相似文献   

14.
Biosorption of heavy metal ions, such as Cu2+, Cd2+ and Zn2+, was carried out using waste activated sludge from municipal sewage treatment plant as adsorption material, and the effects of parameters, such as pH value, temperature, reaction time and sorption duration, were studied in detail. The results indicate that the removal rates of Cu2+, Zn2+ and Cd2+ with low concentration are 96.47%, 80% and 90%, respectively, adsorbed by waste activated sludge. Little effect of dosage of activated sludge on the adsorption of Cu2+ and more effects on the adsorption of Zn2+ and Cd2+ are observed. Little effect of temperature is observed, while pH value and adsorption time exert important influence on the sorption process. The adsorption behaviors of heavy metal ions all have parabolic relationships with pH value. The optimum pH value is between 6 and 10, and the optimum adsorption time is 1 h. In single heavy metal ion system, the sorption processes of Cu2+, Zn2+ and Cd2+ are in accordance with Freundlich model, which indicates that it is suitable for the treatment of these three heavy metal ions using intermittent operation. In addition, the sorption capacity of the sludge for Cu2+ is preferential to the other two ions.  相似文献   

15.
1Introduction Waste activated sludge is the by-product of sewage treated by activated sludge process.According to incomplete statistic,in China sewage discharge amount is4.474×107m3/d[1],and there are more than100sewage treatment plants with different sc…  相似文献   

16.
研究添加捕收剂对城市污水处理过程产生的剩余污泥气浮浓缩的影响,包括捕收剂的种类和用量、与聚丙烯酰胺的配合使用以及pH值等因素。结果表明:对城市污水处理产生的剩余活性污泥,添加捕收剂后能大幅缩短污泥浓缩时间,同时降低浓缩污泥的含水率,提高浓缩效果:捕收剂SESN用量为37.5mg/L,气浮5min时,污泥的含水率从平均99.44%降至96.8%:捕收剂SEAN的用量为18.75mg/L,气浮5min可使污泥含水率从99.44%降至96.4%,体积为浓缩前的1/5;而同样的污泥用重力浓缩1h含水率仅能降到98%左右:捕收剂与聚丙烯酰胺(PAM)配合使用可以提高气浮速度和出水水质。  相似文献   

17.
To evaluate the metal chromium (Cr) contamination of soil at a chromium-containing slag site by ferrochromium production, the contaminated sites, under slag heap, in the vicinity of slag heap and arable soils near the outlet of sewer channel, and unpolluted site 5 km away from one ferroalloy plant in Hunan Province, China, were selected. The concentrations of total Cr and water soluble Cr in bulk soil samples and profile depth samples were determined. The results show that the soils in the vicinity of slag heap have the highest total Cr content followed by the soils under the slag heap and near the outlet of sewer channel of the factory. The mean concentrations of total Cr in the top soils at above three contaminated locations exceed the critical level of Secondary Environmental Quality Standard for Soil in China by 3.5, 5.4 and 1.8 times. In most Cr polluted soils, total Cr has a relative accumulation in soil depth of 40-60 cm, but this trend is not found in unpolluted soils. The average concentrations of water soluble Cr (Ⅵ) in top soils under slag heap and in the vicinity of slag heap are 176.9 times and 52.7 times higher than that in the uncontaminated soils, respectively. However, water soluble Cr (Ⅵ) contents in soils near sewer channel are all low and the values are close to that in the uncontaminated soils. Although water soluble Cr (Ⅵ) content in soil profiles decreases with soil depths, it in soils under slag heap maintains a high level even at a depth of 100-150 cm. The results imply that the transportation of Cr (Ⅵ) can result in a potential risk of groundwater system in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号