首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Distributed call admission control in mobile/wireless networks   总被引:18,自引:0,他引:18  
The major focus of this paper is distributed call admission control in mobile/wireless networks, the purpose of which is to limit the call handoff dropping probability in loss systems or the cell overload probability in lossless systems. Handoff dropping or cell overload are consequences of congestion in wireless networks. Our call admission control algorithm takes into consideration the number of calls in adjacent cells, in addition to the number of calls in the cell where a new call request is made, in order to make a call admission decision. This is done by every base station in a distributed manner without the involvement of the network call processor. The admission condition is simple enough that the admission decision can be made in real time. Furthermore, we show that our distributed call admission control scheme limits the handoff dropping or the cell overload probability to a predefined level almost independent of load conditions. This is an important requirement of future wireless/mobile networks with quality-of-service (QoS) provisioning  相似文献   

2.
The require of omnipresent wireless access and high data rate services are expected to increase extensively in the near future. In this context, heterogeneous networks, which are a mixture of different wireless technologies (LTE-advanced, LTE-advanced Pro, C-IoT (Cellular Internet of Thing), 5G WiFi, etc) are invited to enable important capabilities, such as high data rates, low latencies and efficient resource utilization in order to provide dedicated capacity to offices, homes, and urban hotspots. Mixing these technologies in the same system, with their complementary characteristics, to afford a complete coverage to users can cause various challenges such as seamless handover, resource management and call admission control. This article proposes a general radio resource management framework which can be supported by future network architectures. A combined call admission control, resource reservation algorithm and bandwidth adaptation based IEEE 802.21 MIH standard approach for heterogeneous wireless network is detailed in this framework. Our aims are to guarantee quality of service (QoS) requirements of all accepted calls, reduce new call blocking probability and handover call dropping probability, and maintain efficient resource utilization. Performance analysis shows that our proposed approach best guarantees QoS requirements.  相似文献   

3.
Good quality video services always require higher bandwidth. Hence, to provide the video services e.g., multicast/broadcast services (MBSs) and unicast services along with the existing voice, internet, and other background traffic services over the wireless cellular networks, it is required to efficiently manage the wireless resources in order to reduce the overall forced call termination probability, to maximize the overall service quality, and to maximize the revenue. Fixed bandwidth allocation for the MBS sessions either reduces the quality of the MBS videos and bandwidth utilization or increases the overall forced call termination probability and of course the handover call dropping probability as well. Scalable video coding (SVC) technique allows the variable bit rate allocation for the video services. In this paper, we propose a bandwidth allocation scheme that efficiently allocates bandwidth among the MBS sessions and the non-MBS traffic calls (e.g., voice, unicast, internet, and other background traffic). The proposed scheme reduces the bandwidth allocation for the MBS sessions during the congested traffic condition only to accommodate more calls in the system. Instead of allocating fixed bandwidths for the MBS sessions and the non-MBS traffic, our scheme allocates variable bandwidths for them. However, the minimum quality of the videos is guaranteed by allocating minimum bandwidth for them. Using the mathematical and numerical analyses, we show that the proposed scheme maximizes the bandwidth utilization and significantly reduces the overall forced call termination probability as well as the handover call dropping probability.  相似文献   

4.
无线频谱资源的缺乏以及用户的移动性使无线网络的服务质量的供给成为一个日益严峻的问题。为了满足服务质量的需要,该文提出蜂窝移动通信系统的一种模糊呼叫允许控制方案。它自动搜寻基站中保护信道数量的最优值,使资源得到合理的利用并保证服务质量的供给。对提出的模糊方案和一种动态信道预留方案进行了仿真比较,仿真结果表明模糊方案具有较强的鲁棒性,方案的呼叫阻止率、切换掉线率和信道利用率等性能参数都优于自适应方案。  相似文献   

5.
How to efficiently utilize the scarce radio channel resource while maintaining the desired user‐perceived quality level and improved network performance is a major challenge to a wireless network designer. As one solution to meet this challenge in cellular mobile networks, a network architecture with hierarchical layers of cells has been widely considered. In this paper, we study the performance of a hierarchical cellular network that allows the queueing of both overflow slow‐mobility calls (from the lower layer microcells) and macrocell handover fast‐mobility calls that are blocked due to lack of free resources at the macrocell. Further, to accurately represent the wireless user behaviour, the impact of call repeat phenomenon is considered in the analysis of new call blocking probability. Performance analysis of the hierarchical cellular structure with queueing and call repeat phenomenon is performed using both analytical and simulation techniques. Numerical results show that queueing of calls reduces forced call termination probability and increases resource utilization with minimal call queueing delay. It is also shown that ignoring repeat calls leads to optimistic estimates of new call blocking probability especially at high offered traffic. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In wireless cellular communication systems, call admission control (CAC) is to ensure satisfactory services for mobile users and maximize the utilization of the limited radio spectrum. In this paper, we propose a new CAC scheme for a code division multiple access (CDMA) wireless cellular network supporting heterogeneous self-similar data traffic. In addition to ensuring transmission accuracy at the bit level, the CAC scheme guarantees service requirements at both the call level and the packet level. The grade of service (GoS) at the call level and the quality of service (QoS) at the packet level are evaluated using the handoff call dropping probability and the packet transmission delay, respectively. The effective bandwidth approach for data traffic is applied to guarantee QoS requirements. Handoff probability and cell overload probability are derived via the traffic aggregation method. The two probabilities are used to determine the handoff call dropping probability, and the GoS requirement can be guaranteed on a per call basis. Numerical analysis and computer simulation results demonstrate that the proposed CAC scheme can meet both QoS and GoS requirements and achieve efficient resource utilization.  相似文献   

7.
A novel Cooperative Directional inter-cell Handover Scheme (CDHS) for High Altitude Platform (HAP) communications systems is proposed, in which the handover target cell and the two cells adjacent to this handover target cell work cooperatively to exploit the traffic fluctuation to improve handover performance. Users in the overlap area of the overloaded handover target cell will be forced to handover directionally before their optimal handover boundary in order to free up resources for the handover calls which would otherwise be dropped due to the shortage of resources and queue time out. Simulation results show that the handover call dropping probability is greatly reduced (at least 60%) compared with the general queue handover scheme, with little performance reduction to the call blocking probability, and the Not in the Best Cell (NBC) average time is only increased moderately. Moreover, an optimal cell radius can be achieved for a specific platform speed by minimizing the unified system performance, which is the linear combination of the handover call dropping probability and the NBC average time.  相似文献   

8.
Due to the fact that quality of service requirements are not very strict for all traffic types, more calls of higher priority can be accommodated by reducing some bandwidth allocation for the bandwidth adaptive calls. The bandwidth adaptation to accept a higher priority call is more than that of a lower priority call. Therefore, the multi-level bandwidth adaptation technique improves the overall forced call termination probability as well as provides priority of the traffic classes in terms of call blocking probability without reducing the bandwidth utilization. We propose a novel bandwidth adaptation model that releases multi-level of bandwidth from the existing multimedia traffic calls. The amount of released bandwidth is decided based on the priority of the requesting traffic calls and the number of existing bandwidth adaptive calls. This prioritization of traffic classes does not reduce the bandwidth utilization. Moreover, our scheme reduces the overall forced call termination probability significantly. The proposed scheme is modeled using the Markov Chain. The numerical results show that the proposed scheme is able to provide negligible handover call dropping probability as well as significantly reduced new call blocking probability of higher priority calls without increasing the overall forced call termination probability.  相似文献   

9.
The adaptive modulation and coding (AMC) technique, which has been adopted by advanced mobile telecommunication systems, supports a flexible response to the random radio behaviour. As a result, the attained transmission rate over a wireless link is time varying. Hence, resource demands are not deterministic but fluctuating even for calls with constant bit rate service requirements. Consequently, constant bit rate calls are susceptible to a forced call termination because of insufficient resources not only in a target cell during inter‐cell handoffs but also in a serving cell during radio link deterioration. Furthermore, call blocking and dropping probabilities depend on radio propagation conditions among other factors and therefore they are dissimilar throughout a service area. The latter leads to unfairness problems. We analytically measure the impact of AMC on fixed‐rate service with hard delay constraints such as voice for different signal, mobility and traffic conditions. We consider a reference case (call requests are admitted into the system provided there are enough free resources) and two classes of admission control approaches: traditional (only inter‐cell handoffs are prioritised) and modified (all ongoing calls are prioritised). The reported results reveal conditions for which AMC affects voice call performance and can serve as guidelines on admission control design. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
盛洁  唐良瑞  郝建红 《电子学报》2013,41(2):321-328
 针对现有异构无线网络负载均衡方法未能综合考虑重载网络业务转移和新业务接入控制的问题,提出了一种混合负载均衡算法.该算法首先根据各小区负载水平和终端移动性,将重载小区的适量业务向重叠覆盖的轻载小区转移;其次通过资源预留和强占优先的接入控制策略,为不同优先级的新到业务提供有差别的服务.仿真结果表明,本文算法在保证系统资源利用率的同时,保障了实时与非实时业务的QoS,并相对于参考算法有效降低了系统阻塞率和业务切换概率.  相似文献   

11.
The increasing variety and complexity of traffic in today's mobile wireless networks means that there are more restrictions placed on a network in order to guarantee the individual requirements of the different traffic types and users. Call admission control (CAC) plays a vital role in achieving this. In this paper, we propose a CAC scheme for multiple service systems where the predicted call usage of each service is used to make the admission decision. Our scheme enables real‐time traffic to be transmitted using shared bandwidth without quality of service (QoS) requirements being exceeded. This ensures that the utilization of the available wireless bandwidth is maximized. Information about the channel usage of each service is used to estimate the capacity of the cell in terms of the number of users that can achieve a certain bit error rate (BER). Priorities assigned to each service are used to allocate the network capacity. An expression for the handoff dropping probability is derived, and the maximum acceptance rate for each service that results in the estimated dropping probability not exceeding its QoS requirements is calculated. Each call is then accepted with equal probability throughout the duration of a control period. Achieved QoS during the previous control period is used to update the new call acceptance rates thus ensuring the dropping probability remains below the specified threshold. Simulations conducted in a wideband CDMA environment with conversational, streaming, interactive and background sources show that the proposed CAC can successfully meet the hard restraint on the dropping probability and guarantee the required BER for multiple services. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Handover is one of the key subjects in maintaining the quality of service offered by non‐geostationary constellation systems. As the satellite coverage moves according to the satellite motion, the continuity of a call must be maintained from one satellite to another. In case the handover fails, the call is dropped, resulting in a quality of service degradation. This paper proposes several handover procedures that guarantee a successful handover in non‐geostationary satellite constellations requiring mutual visibility. Reservations at next satellite must be done in advance in order to avoid call drops. Several handover performance metrics (such as call blocking probability, call dropping probability and handover rate) are presented for each procedure as a function of traffic load variation. Comparisons of handover performance metrics between these procedures are presented as well. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
We analyze a hierarchical cellular system with finite queues for new and handoff calls. Both the effect of the reneging of waiting new calls because of the callers' impatience and the effect of the dropping of queued handoff calls as the callers move out of the handoff area are considered, besides the effect of the guard channel scheme. We successfully solve the system by adopting the multidimensional Markovian chain and using the transition-probability matrix and the signal-flow graph to obtain the average new-call blocking probability, the forced termination probability, and the average waiting time of queued new and handoff calls. We further investigate how the design parameters of the buffer sizes and guard channel numbers in macrocell and microcells affect the performance of the hierarchical cellular system. The results show that provision of a buffering scheme and guard channel scheme can effectively reduce the new call blocking probability and the forced termination probability in the hierarchical cellular system, and the effectiveness is more significant in the macrocell than in the microcells  相似文献   

14.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

15.
Call admission control is one of the key elements in ensuring the quality of service in mobile wireless networks. The traditional trunk reservation policy and its numerous variants give preferential treatment to the handoff calls over new arrivals by reserving a number of radio channels exclusively for handoffs. Such schemes, however, cannot adapt to changes in traffic pattern due to the static nature. This paper introduces a novel stable dynamic call admission control mechanism (SDCA), which can maximize the radio channel utilization subject to a predetermined bound on the call dropping probability. The novelties of the proposed mechanism are: (1) it is adaptive to wide range of system parameters and traffic conditions due to its dynamic nature; (2) the control is stable under overloading traffic conditions, thus can effectively deal with sudden traffic surges; (3) the admission policy is stochastic, thus spreading new arrivals evenly over a control period, and resulting in more effective and accurate control; and (4) the model takes into account the effects of limited channel capacity and time dependence on the call dropping probability, and the influences from nearest and next-nearest neighboring cells, which greatly improve the control precision. In addition, we introduce local control algorithms based on strictly local estimations of the needed traffic parameters, without requiring the status information exchange among different cells, which makes it very appealing in actual implementation. Most of the computational complexities lie in off-line precalculations, except for the nonlinear equation of the acceptance ratio, in which a coarse-grain numerical integration is shown to be sufficient for stochastic control. Extensive simulation results show that our scheme steadily satisfies the hard constraint on call dropping probability while maintaining a high channel throughput  相似文献   

16.
在均匀业务模型的基础上,根据LEO卫星通信系统自身特点,提出了一种简单有效的呼叫接入控制策略,这种策略能在非均匀业务下较好地工作,此时系统新呼叫阻塞率和切换呼叫失败率能达到更好的平衡。在分析随机接入(RANDOM)算法和预留保护信道(GC)算法的基础上,进行了计算机仿真,并给出了相应的仿真结果。  相似文献   

17.
Cognitive radio heralds the next step in the evolution of wireless communications. In this paper, an analytical model for infrastructure based cognitive radio systems is proposed, and its performance is evaluated under bursty traffic scenarios in a multiple cell environment. Performance metrics like probabilities of dropping and blocking for primary and secondary users as well as forced termination and forced frequency handoff for secondary users are investigated, and the analytical model is verified with simulations. In addition to the analytical model, a new resource planning method is proposed to compensate for uneven traffic load distribution. The proposed method considers offered traffic, hop count to the heavily loaded cell, and velocity of mobile users during resource planning and performs better in terms of probability of blocking, dropping, and forced termination. The proposed method is promising in balancing the system performance measures, yet there is room for further improvement for finding a closed formula for the proposed analytical model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a new cross-layer design is proposed employing the predictability of rain faded channels to guarantee QoS requirements in High Altitude Platform (HAP) networks. Both a centralized and a distributed scheme are proposed for call admission control of packet-switched HAP wireless networks using a cross-layer approach aiming at keeping the call dropping probability below a predefined threshold. In both schemes, a new call is accepted if there are sufficient resources for the ongoing calls and for the new one to guarantee their QoS requirements for their whole connection. The performance of the proposed schemes is investigated using markov chain analysis and bounds of the call blocking probability are determined analytically.  相似文献   

19.
In this paper, a modified version of the packet reservation multiple-access (PRMA) protocol is proposed to provide spatially dispersed voice and data user terminals wireless access to a base station over a common short-range radio channel. An analytical approach is presented in order to derive system performance in terms of mean data message delay and voice packet dropping probability. A suitable permission probability design is also proposed to enhance system performance. Performance comparisons with an extension of the PRMA protocol to voice data systems previously reported in literature are shown to highlight the better behavior of this approach  相似文献   

20.
Emerging mobile wireless networks are characterized by significant uncertainties in mobile user population and system resource state. Such networks require adaptive resource management that continuously monitor the system and dynamically adjust resource allocations for adherence to the desired system performance requirements. We propose adaptive resource management technique based on control theory. The controller dynamically solves resource allocation problem using feedback control laws. In the base algorithm, the number of guard channels is dynamically adjusted by feeding back the current handoff call dropping probability. The base algorithm is then enhanced in two ways: feeding back the instantaneous number of handoff calls and by probabilistically implementing a fractional number of guard channels. We study the effects of parameter choices on the performance of the proposed algorithms using discrete event simulation. Simulation results indicate that the feedback controllers can guarantee the predetermined call dropping probability under a variety of traffic conditions, and so can utilize the scarce wireless resource efficiently by accepting more new calls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号