首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
《Fuel》1987,66(10):1326-1329
Tritium labelled gaseous hydrogen was used to clarify the role of gaseous hydrogen in coal liquefaction. Wandoan coal was hydrogenated under 5.9 MPa (initial pressure) of 3H-labelled hydrogen and in unlabelled solvents such as tetralin, naphthalene and decalin at 400 °C and for 30 min in the presence or absence of NiMoAl2O3 catalyst. Without a catalyst, liquefaction proceeded by addition of the hydrogen from donor solvent. The NiMoAl2O3 catalyst enhanced both hydrogen transfer from gas phase to coal and hydrocracking of coal-derived liquids. With NiMoAl2O3 catalyst, liquefaction in naphthalene solvent proceeded through the hydrogen-donation cycle: naphthalene → tetralin → naphthalene. The amount of residues showed that this cycle was more effective for coal liquefaction than the direct addition of hydrogen from gas phase to coal in decalin solvent. The 3H incorporated in the coal-derived liquids from gas phase was found to increase in the following order: oil < asphaltenes < preasphaltenes < residue.  相似文献   

2.
Lonnie W. Vernon 《Fuel》1980,59(2):102-106
Model compounds containing the types of carboncarbon bonds thought to be present in coal were pyrolyzed in the presence of tetralin and molecular hydrogen at 450 °C. The relative rates of conversion of the model structures are predictable from the bond dissociation energies of the compounds. Conversion of dibenzyl in the presence of both tetralin and molecular hydrogen or in the presence of hydrogen alone proceeds along two parallel reaction paths. Toluene is produced by a thermal cracking reaction in which the rate-controlling step is the thermal cleavage of the β-bond in dibenzyl. Benzene and ethylbenzene are produced by a hydrocracking reaction. The rate of the hydrocracking reaction is directly proportional to the hydrogen pressure. The strong bond in diphenyl is hydrocracked in a system containing both molecular hydrogen and a source of free radicals. These studies on model coal structures offer firm evidence that molecular hydrogen can participate directly in free radical reactions under coal liquefaction conditions. Under some conditions molecular hydrogen can compete with a good donor solvent to stabilize the thermally produced free radicals. Molecular hydrogen can also promote some hydrocracking reactions in coal liquefaction that do not occur to an appreciable extent in the presence of only donor.  相似文献   

3.
Single and multi-stage liquefaction of Shenhua (SH) bituminous coal and re-liquefaction of its liquefaction residue (SHLR) were carried out in an autoclave reactor to investigate the essential approach for promoting oil yield and conversion in SH coal direct liquefaction (SHDL). The multi-stage liquefaction includes pretreatment, keeping the reactor at 250 °C for 40 min before heating up to the reaction temperature, and two-stage liquefaction processes consisting of low temperature stage, 400 °C, and high temperature stage, 460 °C. The results show that the pretreatment has slight effect on oil yield and conversion of SHDL, especially for liquefaction at 460 °C. There is a positive function of two-stage liquefaction in shortening reaction time at high temperature. Increasing ratio of solvent to SHLR can promote the oil yield and abate reaction condition in SHLR re-liquefaction, that is, it can promote the conversion from preasphaltene and asphaltene to oil. The primary factor to inhibit coal liquefaction is the consumption of hydrogen free radical (H·) from solvent or H2 and condensation of free radicals from coal pyrolysis after a period of reaction. So the essential approach for increasing oil yield and conversion of SHDL is to provide enough H· to stabilize the free radicals from coal pyrolysis.  相似文献   

4.
Harald Jüntgen 《Fuel》1984,63(6):731-737
Kinetic data show that the pyrolysis reactions of hard coal may be interpreted in terms of parallel first order reactions, relating to the coal functional groups which can be considered as predecessors of the pyrolysis products. This relation is confirmed by C-, H- and O-balances of pyrolysis products and those of the corresponding predecessor structural groups of the coal. The activation energies measured are of the same order of magnitude as the bonding energies of bridge CC bonds between the aromatic ring-systems in the coal molecule. These observations suggest a mechanism of coal pyrolysis, consisting of the following steps: rupture of CC bridges; formation of radical groups; and recombination of radicals to stable molecules part of which, i.e., those of low molecular weight, diffuse out of the solid matter whereas the rest (whose diffusion in the pore system of the solid is prevented due to their higher molecular weight) react with each other at higher temperatures to give coke, releasing elementary hydrogen. In the presence of hydrogen > 500 °C, additional reactions of partial hydrogenation of polynuclear aromatics with subsequent hydrocracking will occur, leading to increased formation of highly aromatic tar, BTX, CH4 and H2O.  相似文献   

5.
Hydroliquefaction of low-sulfur Australian coals (Wandoan and Yallourn) was studied using iron carbonyl complexes as catalyst. The addition of Fe(CO)5 (2.8 wt% Fe of coal) increased coal conversion from 48.6 to 85.2% for Wandoan coal, and from 36.7 to 69.7% for Yallourn coal in 1-methylnaphthalene at 425°C under an initial hydrogen pressure of 50 kg cm?2. When molecular sulfur was added to iron carbonyls (Fe(CO)5, Fe2(CO)9 and Fe3(CO)12), higher coal converions ( > 92%) and higher oil yields (>46%) were obtained, along with an increase in the amount of hydrogen transferred to coal from the gas phase (0.2 to 2.8%, d.a.f. coal basis). In the liquefaction studies using a hydrogen donor solvent, tetralin, Fe(CO)5S catalyst increased the amount of hydrogen absorbed from the gaseous phase and decreased the amount of naphthalene dehydrogenated from tetralin. The direct hydrogen transfer reaction from molecular hydrogen to coal fragment radicals seems to be a major reaction pathway. Organic sulfur compounds, dimethyldisulfide and benzothiophene, and inorganic FeS2 and NiS were found to be good sulfur sources to Fe(CO)5. From X-ray diffraction analyses of liquefaction residues, it is concluded that Fe(CO)5 was converted into pyrrhotite (Fe1?xS) when sulfur was present, but into Fe3O4 in the absence of sulfur.  相似文献   

6.
讨论了煤炭直接液化过程中溶剂的特点、作用及质量要求,煤液化溶剂具有一般溶剂的功能,同时还具有良好的供氢和传递氢的功能特点,起到溶解、分隔煤裂解生成的自由基的作用,溶剂必须具有一定的分子结构和分子大小。初步讨论了表征煤液化循环溶剂供氢性的指标,指出普通溶剂如四氢萘和二氢萘等部分饱和的芳香化合物可直接用作煤液化溶剂,多环芳烃含量较高的煤焦油和石油系重质油,经过预加氢处理提高溶剂的供氢性后,可作为煤液化过程的起始溶剂或替代溶剂。  相似文献   

7.
煤直接液化制油技术是促进煤炭清洁高效利用、缓解石油供需矛盾、保障我国能源安全的重要途径。为全面了解煤液化反应机理、动力学、催化剂及工艺的全过程,促进煤直接液化技术基础研究的快速进步和新工艺的开发,笔者综述了国内外在煤加氢液化反应机理、反应动力学、催化剂以及液化工艺方面取得的研究成果,重点介绍了德国IGOR、日本NEDOL和我国的神华煤液化工艺,分析了这些典型煤液化工艺的开发历程和特点;指明了煤直接液化制油技术发展趋势。煤的加氢液化反应是自由基反应机理,是一系列顺序反应和平行反应的综合结果,包含煤的热解、自由基加氢、脱杂原子和缩合反应等,总体上以顺序反应为主。借助同位素示踪、原位实时检测、等离子体技术以及微波快速加热技术等现代分析方法和试验手段,重点研究自由基的产生速率、活性氢产生速率及定量传递机理,有助于深入认识和精准阐明煤加氢液化反应机理。各国学者利用不同的研究方法,针对不同煤种、催化剂、工艺条件和供氢溶剂等,建立了各种各样的动力学模型。动力学模型从单组分到双组分和多组分,从连续反应、平行反应到复杂的网络反应,从最初的一步反应到后来较为合理的多段反应,模型越来越复杂,越来越接近工业应用。根据反应阶段不同进行分段处理的多组分"集总"反应动力学模型将是今后煤加氢液化反应动力学发展的主要方向。借助先进分析手段及科学的处理方法,建立真正揭示不同条件下煤液化动力学规律的通用型动力学模型是未来的发展趋势。借助纳米合成、等离子体等高新技术,调控组分配伍、降低催化剂粒径、优化制备方法是制备高活性催化剂的有效手段。强化系统合理配置和优化集成,重视煤的温和液化和分级转化,优化产品结构,发展直接液化-间接液化耦合技术是煤直接液化未来的发展趋势。  相似文献   

8.
A model is presented for the kinetic study of the thermal liquefaction of Belle Ayr subbituminous and Burning Star bituminous coals with anthracene oil, hydrogenated anthracene oil and hydrogenated phenanthrene. All experiments were performed in a continuous-feed, stirred tank reactor, at a temperature of 450 °C and a space time of approximately 5 to 55 min. A kinetic model which includes a reaction: coal + oil→more reactive coal, correlates the data reasonably well. This reaction explains the net consumption of anthracene oil during the initial stages of liquefaction. Such a reaction may account for a portion of the swelling of coal at low space times and the sizable increase of viscosity of reaction slurry during these initial stages of liquefaction. It is also observed that the yield of oil increases when solvents of increasing hydrogen donor capacity are used.  相似文献   

9.
Yoshio Kamiya  Shinichi Nagae 《Fuel》1985,64(9):1242-1245
Hydrogen transfer from donor solvent to coal must involve reactions such as hydrogen donation to free radicals and hydrogenation of aromatic structures. The relative reactivities of five typical hydrogen donor solvents, more reactive than tetralin, were determined using a competing elimination reaction in the liquefaction of a bituminous coal at 400 °C and a brown coal at 350 °C. 9,10-Dihydroanthracene, 9,10-dihydrophenanthrene and 1,2,3,4-tetrahydroquinoline exhibited outstanding hydrogen donating ability. Further, the relative reactivities of five mild hydrogen donor solvents such as acenaphthene and indan were determined by a similar elimination reaction using a bituminous coal at 450 °C.  相似文献   

10.
《Fuel》1987,66(10):1321-1325
Liquefaction of Wandoan coal using a 3H labelled tetralin solvent which contains a small amount of 14C labelled naphthalene has been studied at 400 °C under an initial hydrogen pressure of 5.9 MPa, in the presence or absence of NiMoAl2O3 catalyst. The amounts of 3H and 14C transferred from the solvent to the products were measured as liquefaction progressed. The reaction pathways in the presence and absence of the catalyst were discussed and their reaction rate constants were calculated. According to the mass balances of hydrogen and 3H, in the absence of catalyst, tetralin provided coal with hydrogen atoms, and the degree of hydrogen exchange between coal and solvent was small. The catalyst decreased the hydrogen addition from solvent to coal and increased that from gas to coal.  相似文献   

11.
Yuki Sekiguchi  Don H. White 《Fuel》1983,62(8):908-912
Coal liquefaction in the presence of poly(vinylcyclohexane) (PVCH) was studied at 400 °C under an atmosphere of nitrogen. PVCH promoted coal conversion better than tetralin (27.8% for tetralin, 47.2% for preheated PVCH). The effects of the initial molecular weight of PVCH, of free radicals formed during a decrease within molecular weight, and of changes in molecular structure with decomposition were examined. Conversion increased with increased initial molecular weight between 112 amu (ethylcyclohexane) and 700 amu (low molecular weight PVCH); no effect was found for molecular weights greater than 700. The best conversion was obtained when preheated PVCH was used, resulting from formation of allylic hydrogens. Aromatic structures were not found in the preheated PVCH. It is concluded that PVCH with molecular weights of ≈ 700 amu with allylic hydrogens present promoted the liquefaction of coal better than tetralin.  相似文献   

12.
An efficient Chromatographic separation scheme has been developed to characterize the SYNTHOIL hydrodesulphurization coal liquefaction product. Chromatographic fractions were analysed by nuclear magnetic resonance to determine carbon and hydrogen aromatic/aliphatic distribution ratios of major molecular types. The SYNTHOIL product and its coal-derived asphaltenes were found to contain intermolecularly hydrogen-bonded complexes that may affect the physical properties of the oil.  相似文献   

13.
Free radicals are generally accepted as playing an important role in the liquefaction of coal. In a continuing series of studies, we are attempting to determine the relation between the nature and properties of free radicals and process variables such as residence time in a reactor, heating rates to achieve highest temperature and the role of various solvents and gases in stabilizing free radicals in lower-molecular-weight moieties. The free radical concentration after thermal treatments correlates well with the propensity of a given solvent to donate its hydrogen.  相似文献   

14.
The catalytic activity of metal carbonyl complexes of chromium, molybdenum, tungsten, manganese, iron, cobalt, and nickel in the liquefaction of coal (Illinois No. 6, Wandoan and Mi-ike) was investigated. The carbonyl compounds of molybdenum, tungsten, iron, cobalt, and nickel acted as highly active catalysts for the liquefaction of Illinois No. 6 coal, resulting in high coal conversion (>90%) and high oil yield (>32%), under hydrogen pressure of 50 kg cm?1 in a nonhydrogen-donating solvent at 425°C for 60 min. Among the catalysts surveyed, Mo(CO)6 gave the highest oil yield (57.7%) and the largest amount of hydrogen transferred to coal (3.1 wt.% of d.a.f. coal). However, the molybdenum and tungsten carbonyls did not exhibit high catalytic activity for low sulfur Wandoan coal in the absence of added sulfur. On the other hand, cobalt and nickel carbonyls showed high catalytic activity irrespective of the amount of sulfur in the reaction system. Fe(CO)5Mo(CO)6 binary catalyst promoted hydroliquefaction of Wandoan coal, resulting in increases in oil yield and transfer of hydrogen to coal in the presence of sulfur.  相似文献   

15.
This study of the nature and role of free radicals in coals and coal conversion considers free radicals from selected macerals in the liquefaction process. High-purity macerals were liquefied to different extents at high temperature (425–480 °C) in the presence of naphthalene or tetralin and hydrogen or nitrogen. The initial concentrations of free radicals as well as the residual concentrations have been measured. The dependence of free radical concentrations on solvents, gases, and temperature is reported. Resinites show the least number of free radicals. They also liquefy almost completely under all conditions used. Fusinites have the highest concentration of residual free radicals and they are unaffected by solvent, gas or temperature changes: The vitrinites show intermediate free radical concentrations that depend very strongly on the solvent used, and on the temperature, but they are unaffected by the gas used. A correlation has been established between free radical concentration and degree of conversion.  相似文献   

16.
The work reported here represents initial attempts to develop a complete kinetic and mechanistic understanding of the reaction chemistry of H2S under coal liquefaction conditions, using both model systems and coal. Hydrogen sulphide was found to promote/catalyse the transfer of hydrogen from tetralin to 2-hydroxyquinoline (2-HOQ). The presence of H2S can increase the rate of hydrogen transfer from tetralin to 2-HOQ by a factor of 10 compared with the same reaction run in the absence of H2S. The energy of activation for hydrogen transfer was found to decrease by ≈5 kcal mol−1 in the presence of H2S. The presence of H2S was also found to promote loss of oxygen from 2-HOQ to form small amounts of quinoline. No evidence of CC or CN bond cleavage in 2-HOQ was noted under any of the reaction conditions studied. These results suggest that the presence of H2S reduces the temperatures necessary to promote effective hydrogen transfer from tetralin by 50–75 °C. Moreover, they imply that similar effects occur in H2S-promoted coal liquefaction.  相似文献   

17.
Most coal liquefaction processes are based on the thermal cleavage of activated bonds giving reactive carbon and oxygen radicals which abstract hydrogen atoms from the donor solvent. The role of oil is approximated in this study by using a simple standard reaction. A series of five representative solvents react with phenyl and phenyloxy radicals generated by thermolysis of benzoyl peroxide at 87 °C in tetrachloroethylene. The n.m.r. analysis of the reacting mixture defines four performance indices, i.e. the hydrogen-donor, the efficiency, the recycle and the scavenger indices, which characterize the ability of these solvents as efficient recycle oils in coal liquefaction processes. 9,10-dihydrophenanthrene proves to be by far the most appropriate solvent for this purpose.  相似文献   

18.
The methods of reduction and reductive alkylation with potassium in tetrahydrofuran and sodium in liquid ammonia have been applied to sulphur-rich, highly fluid (in carbonization) Ra?a lignite. The results indicate that solubilization of coal by alkylation of the coal anion formed in liquid ammonia is a clean and defined process. It is concluded that the highly thermoplastic properties of Ra?a coal result mainly from cleavage of CSC(COC) bridges, low contents of OH and lack of SH groups. In contrast to ‘normal’ bituminous coals investigated until now and characterized by wide distribution of the molecular weight of clusters formed on cleavage of ether bridges, about 80% (w/w) of Ra?a lignite is built of units of almost uniform molecular weight (MW 500).  相似文献   

19.
20.
The structural correlation between coal and its liquefaction products has been examined using cross-polarization, magic angle spinning (CP/MAS) 13C n.m.r. and field ionization mass spectrometry (f.i.m.s.). The CH2/aromatic carbon ratios of all solid products (asphaltene, preasphaltene and residue) were close to the corrected +CH2/aromatic carbon ratio for the coal. This suggests that the ring structure of the structural unit of each solid product is essentially similar to that of the parent coal, except for a difference in the degree of polymerization of the structural units. The CH2/aromatic carbon ratios of aromatic ring-type oil fractions also correlated with the corrected ratio for the coal, although they were larger. The z series distribution obtained from the f.i.m.s. of oil fractions revealed that coal with a higher CH2/aromatic carbon ratio produced an oil rich in naphthenic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号