首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Floating matrix tablets of atenolol were developed to prolong gastric residence time and increase drug bioavailability. Atenolol was chosen as a model drug because it is poorly absorbed from the lower gastrointestinal tract. The tablets were prepared by direct compression technique, using polymers such as hydroxypropyl methylcellulose (HPMC K15M, K4M), guargum (GG), and sodium carboxymethylcellulose (SCMC), alone or in combination, and other standard excipients. Tablets were evaluated for physical characteristics viz. hardness, swelling index, floating capacity, thickness, and weight variation. Further, tablets were evaluated for in vitro release characteristics for 8 hr. The effect of effervescent on buoyancy and drug release pattern was also studied. In vitro release mechanism was evaluated by linear regression analysis. GG- and SCMC-based matrix tablets showed significantly greater swelling indices compared with other batches. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium.  相似文献   

2.
Floating matrix tablets of atenolol were developed to prolong gastric residence time and increase drug bioavailability. Atenolol was chosen as a model drug because it is poorly absorbed from the lower gastrointestinal tract. The tablets were prepared by direct compression technique, using polymers such as hydroxypropyl methylcellulose (HPMC K15M, K4M), guargum (GG), and sodium carboxymethylcellulose (SCMC), alone or in combination, and other standard excipients. Tablets were evaluated for physical characteristics viz. hardness, swelling index, floating capacity, thickness, and weight variation. Further, tablets were evaluated for in vitro release characteristics for 8 hr. The effect of effervescent on buoyancy and drug release pattern was also studied. In vitro release mechanism was evaluated by linear regression analysis. GG- and SCMC-based matrix tablets showed significantly greater swelling indices compared with other batches. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium.  相似文献   

3.
Oral sustained-release bioadhesive tablet formulation of didanosine   总被引:4,自引:0,他引:4  
The objective of this study was to formulate a hydrogel-forming bioadhesive drug delivery system for oral administration of didanosine (ddI). The aim of this tablet dosage form is to improve the oral absorption of ddI by delivering it in small doses over an extended period and localizing it in the intestine by bioadhesion. Compressed tablets of ddI using Polyox® WSRN-303, Carbopol® 974P-NF, and Methocel® K4M as the bioadhesive release rate-controlling polymers were prepared. The effect of polymer concentration on the release profile and in vitro bioadhesion of the matrix tablets was studied. Tablet formulations with Polyox WSRN-303 (10%) and Methocel K4M (30%) showed 93 and 90% drug release, respectively, after 12 h. The drug release was found to be linear when fitted in the Higuchi equation (square-root time equation), suggesting zero-order release. Carbopol 974-P-NF was found to inhibit the complete release of ddI because of drug-polymer interaction; hence, is not suitable for formulation of ddI. Drug diffusion and swelling of the polymer (anomalous Fickian release) was found dominant in ddI release. In general, in vitro bioadhesion increased with an increase in polymer concentration. Tablets containing a single polymer can be designed to form hydrogels serving the dual purpose of bioadhesion and sustained release.  相似文献   

4.
The objective of this study was to formulate a hydrogel-forming bioadhesive drug delivery system for oral administration of didanosine (ddI). The aim of this tablet dosage form is to improve the oral absorption of ddI by delivering it in small doses over an extended period and localizing it in the intestine by bioadhesion. Compressed tablets of ddI using Polyox® WSRN-303, Carbopol® 974P-NF, and Methocel® K4M as the bioadhesive release rate-controlling polymers were prepared. The effect of polymer concentration on the release profile and in vitro bioadhesion of the matrix tablets was studied. Tablet formulations with Polyox WSRN-303 (10%) and Methocel K4M (30%) showed 93 and 90% drug release, respectively, after 12 h. The drug release was found to be linear when fitted in the Higuchi equation (square-root time equation), suggesting zero-order release. Carbopol 974-P-NF was found to inhibit the complete release of ddI because of drug-polymer interaction; hence, is not suitable for formulation of ddI. Drug diffusion and swelling of the polymer (anomalous Fickian release) was found dominant in ddI release. In general, in vitro bioadhesion increased with an increase in polymer concentration. Tablets containing a single polymer can be designed to form hydrogels serving the dual purpose of bioadhesion and sustained release.  相似文献   

5.
The emerging new fixed dose combination of metformin hydrocholride (HCl) as sustained release and glipizide as immediate release were formulated as a bilayer matrix tablet using hydroxy propyl methyl cellulose (HPMC) as the matrix-forming polymer, and the tablets were evaluated via in vitro studies. Three different grades of HPMC (HPMC K 4M, HPMC K 15M, and HPMC K 100M) were used. All tablet formulations yielded quality matrix preparations with satisfactory tableting properties. In vitro release studies were carried out at a phosphate buffer of pH 6.8 with 0.75% sodium lauryl sulphate w/v using the apparatus I (basket) as described in the . The release kinetics of metformin were evaluated using the regression coefficient analysis. There was no significant difference in drug release for different viscosity grade of HPMC with the same concentration. Tablet thus formulated provided sustained release of metformin HCl over a period of 8 hours and glipizide as immediate release.  相似文献   

6.
The emerging new fixed dose combination of metformin hydrocholride (HCl) as sustained release and glipizide as immediate release were formulated as a bilayer matrix tablet using hydroxy propyl methyl cellulose (HPMC) as the matrix-forming polymer, and the tablets were evaluated via in vitro studies. Three different grades of HPMC (HPMC K 4M, HPMC K 15M, and HPMC K 100M) were used. All tablet formulations yielded quality matrix preparations with satisfactory tableting properties. In vitro release studies were carried out at a phosphate buffer of pH 6.8 with 0.75% sodium lauryl sulphate w/v using the apparatus I (basket) as described in the United States Pharmacopeia (2000). The release kinetics of metformin were evaluated using the regression coefficient analysis. There was no significant difference in drug release for different viscosity grade of HPMC with the same concentration. Tablet thus formulated provided sustained release of metformin HCl over a period of 8 hours and glipizide as immediate release.  相似文献   

7.
In this study, a novel tablet of protein drug matrix for colon targeting was developed using resistant starch as a carrier prepared by pre-gelatinization and cross-linking of starch. The effects of pre-gelatinization and cross-linking on the swelling and enzymatic degradation of maize starch as well as the release rate of drug from the matrix tablets were examined. Cross-linked pre-gelatinized maize starches were prepared by double modification of pre-gelatinization and cross-linked with POCl3, and bovine serum albumin was used as a model drug. For in vitro drug release assays, the resistant starch matrix tablets were incubated in simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid, respectively. The content of resistant starch and swelling property of maize starch were increased by pre-gelatinization and cross-linking, which retarded its enzymatic degradation. Drug release studies have shown that the matrix tablets of cross-linked pre-gelatinized maize starch could delivery the drug to the colon. These results indicate that the resistant starch carrier prepared by pre-gelatinization and cross-linking can be used for a potential drug delivery carrier for colon-targeting drug matrix delivery system.  相似文献   

8.
It is a challenge to deliver water-soluble drug based on hydrophilic matrix to colon because of swelling and erosion of polysaccharides in contact with media. In our study, guar-based hydrophilic matrix tablets containing water-soluble total alkaloids of Sophora alopecuroides prepared by wet granulation technique were evaluated. A novel method was established to investigate the changes of swelling and volume for guar-based tablets in undynamic state, which generally showed a rapid swelling and volume change in the first 9 h, then the hydrated speed slowed down. On the other hand, the influence of different pH of the media on water uptake and erosion of various guar-based formulations in dynamic state indicated that the hydrated constants in simulated gastric fluid (SGF) was higher than that in SIF, which followed varied mechanism of water penetration by fitting Davidson and Peppas model. The extent of erosion was between 22.4 and 32.6% in SIF within 360 min. In vitro sophoridine release studies in successive different mimicking media showed that the guar matrix tablets released 13.5–25.6% of sophoridine in the first 6 h; therefore it was necessary to develop the bilayer matrix tablet by direct-compressing coating 100 mg guar granula on core tablet. The initial release of coated tablet was retarded and the bilayer matrix tablet was suitable for colon target.  相似文献   

9.
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and β-cyclodextrin (β-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE20 h), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models—Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.  相似文献   

10.
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and β-cyclodextrin (β-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE20 h), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models—Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.  相似文献   

11.
Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.  相似文献   

12.
Controlled release matrix tablets of ketorolac tromethamine (KT) were prepared by direct compression technique using cellulose derivatives as hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), and carboxymethyl cellulose (CMC) in different concentrations (10-20%). The effect of polymer type and concentration was investigated on drug release by 2(3) factorial design. For the quality control of matrix tablets, weight deviation, hardness, friability, diameter-height ratio, content uniformity of KT, and in vitro dissolution technique were performed. UV Spectrophotometric method was used to detection of KT in matrix tablets. This method was validated. Dissolution profiles of the formulations were plotted and evaluated kinetically. An increase in polymer content resulted with a slow release rate of drug as was expected. According to the dissolution results, tablets prepared with HPMC + HEC + CMC (F1 and F8) were found to be the most suitable formulation for KT. About 99.27% KT was released from F8 in 7 h.  相似文献   

13.
Controlled release matrix tablets of ketorolac tromethamine (KT) were prepared by direct compression technique using cellulose derivatives as hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), and carboxymethyl cellulose (CMC) in different concentrations (10–20%). The effect of polymer type and concentration was investigated on drug release by 2³ factorial design. For the quality control of matrix tablets, weight deviation, hardness, friability, diameter–height ratio, content uniformity of KT, and in vitro dissolution technique were performed. UV Spectrophotometric method was used to detection of KT in matrix tablets. This method was validated. Dissolution profiles of the formulations were plotted and evaluated kinetically. An increase in polymer content resulted with a slow release rate of drug as was expected. According to the dissolution results, tablets prepared with HPMC + HEC + CMC (F1 and F8) were found to be the most suitable formulation for KT. About 99.27% KT was released from F8 in 7 h.  相似文献   

14.
The preparation of sustained-release (SR) drug pellets and their tablets was evaluated. Pellets containing indomethacin, pseudoephedrine hydrochloride (P-HCl), or pseudoephedrine (P) base were prepared by spraying a mixture of drug, Eudragit S-100 resins, dibutyl sebacate, and alcohol onto nonpareil seeds via the Wurster-column process. The oven-dried drug/Eudragit S-100 (DS) pellets were coated with different levels of Eudragit RS and Eudragit S-100 acrylic resins. Tablets containing P-HCl or P-base SR pellets, microcrystalline cellulose, and Methocel K4M were compressed. The solubility of the drug entity in the polymer solution was found to be the most critical factor affecting the yield and the physical properties of the resultant DS pellets. Dissolution studies of Eudragit RS coated drug pellets demonstrated that the release profiles depended not only on the physicochemical properties of the drug, particularly aqueous solubility, but also on the coating levels. The release rate profiles of the matrix tablets can be modified by varying the types of P-HCl or P-base SR pellets in the formulation. The release of drug from the matrix tablets is primarily matrix controlled.  相似文献   

15.
Polymers, and particularly hydrogels, are becoming very popular in formulating controlled-release tablets because they are excellent drug carriers. The effects of hydrophilic and hydrophobic polymers, incorporated in matrices containing soluble (propranolol HCl) or less soluble (flurbiprofen) drugs, on swelling and release kinetics were investigated. The results indicate that swelling and release profiles were affected by the amount of ingredients, the characteristics of the polymer, and the drug substances incorporated in the matrices. Swelling may influence the release rate of the drugs from the matrices. The data obtained from the in vitro dissolution study were evaluated on the basis of a theoretical dissolution equation, by linear transformation of the dissolution curve, and by the Peppas equation. The release mechanisms appeared complex and are affected by the composition of the matrix  相似文献   

16.
The mucoadhesion, swelling, and drug release behavior of polyethylene oxide (PEO) and carbopol (CP) matrices were studied using a water soluble model drug diltiazem hydrochloride. The mucoadhesive strength of the matrices increased with increase in polymer content. The results showed that PEO was more mucoadhesive than CP. Mucoadhesion of the tablets was dependent upon the swelling. Swelling was ascertained by measuring the axial and radial expansion of matrix tablets following exposure to media of physiological ionic strength. There was a marked increase in the swelling index of matrices containing high polymer content of PEO as compared to CP. Drug release kinetics were found to be closely related to dissolution and swelling properties of the matrices. The release was found to be non-fickian with n (release exponent) values ranging from 0.45-0.58. At a constant polymer content (15.84% w/w), the main contributing factor for the mucoadhesion, swelling, and release was the amount of PEO.  相似文献   

17.
Formulation and evaluation of Methocel K15M bioadhesive matrix tablets   总被引:1,自引:0,他引:1  
Methocel K15M is a bioadhesive polymer. Its adhesion and bioadhesion characteristics were evaluated by shear stress measurement and detachment force measurement methods, respectively. The effect of pH on adhesion was studied, and it was found that the maximum adhesion was between pH 5 and pH 6. Adhesion strength at different parts of the sheep intestine was studied; in the duodenal portion of the intestine, the adhesion was maximum. Chlorpheniramine maleate and diclofenac sodium drugs are formulated with Methocel K15M as matrix tablets. In vitro release studies revealed that some of the formulations showed initial first-order behavior followed by zero-order release behavior.  相似文献   

18.
Methocel K15M is a bioadhesive polymer. Its adhesion and bioadhesion characteristics were evaluated by shear stress measurement and detachment force measurement methods, respectively. The effect of pH on adhesion was studied, and it was found that the maximum adhesion was between pH 5 and pH 6. Adhesion strength at different parts of the sheep intestine was studied; in the duodenal portion of the intestine, the adhesion was maximum. Chlorpheniramine maleate and diclofenac sodium drugs are formulated with Methocel K15M as matrix tablets. In vitro release studies revealed that some of the formulations showed initial first-order behavior followed by zero-order release behavior.  相似文献   

19.
The objective of this study was to develop sustained release (SR) matrix tablets of metoprolol succinate (MS), by using different polymer combinations and fillers, to optimize by response surface methodology and to evaluate biopharmaceutical parameters of the optimized product. Matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and ethyl cellulose (EC); and lactose and dibasic calcium phosphate dihydrate (DCP) as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was subjected to further study like scanning electron microscopy, swelling study and in vivo study in rabbit model. Both in vitro and in vivo study revealed that combining of HPMC K100M (21.95%) with EC (8.85%), and use of DCP as filler sustained the action up to 12 h. The in vivo study of new SR tablets showed significant improvement in the oral bioavailability of MS in rabbits after a single oral dose of 25 mg. The delayed T(max) and lower C(max) indicated a slow and SR of MS from the optimized matrix tablets in comparison with the immediate release dosage form. The developed SR (MS) tablet of improved efficacy can perform therapeutically better than conventional tablet.  相似文献   

20.
Novel, controlled‐release formulations for high drug load, highly water soluble compound niacin based on polyethylene oxide (PEO) and hydroxypropylmethyl cellulose (HPMC) matrices were developed and investigated. The effect of sodium bicarbonate as a modulator of swelling, erosion, and drug release and its impact on changes in the kinetics of axial swelling and gel strength were evaluated by textural analysis during dissolution study. The drug release rate from PEO‐based matrices was faster and correlated with lower gel strength, greater water uptake, and greater matrix erosion. Slower release rate and greater release duration correlated significantly with greater matrix swelling with negligible matrix erosion for the HPMC‐based matrix system. Inclusion of sodium bicarbonate in the polymeric matrix salted out the macromolecules and increased gel strength and gel viscosity, especially in the vicinity of the swelling fronts. An in vivo study in human subjects after administration of the formulations and a commercial product exhibited similar plasma concentrations. For the formulation of interest, the mean drug fraction absorbed by the body was calculated by the Wagner‐Nelson technique, and a level A “in vitro‐in vivo correlation” was observed between the percent released in vitro and percent absorbed in vivo. The developed formulations appear to be robust and easy to manufacture with maximum flexibility with respect to drug dose, polymeric carriers, duration, and kinetics of drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号