首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microstructural features present at the interface between a weld deposited Stellite 6 hard facing and an austenitic stainless steel substrate are described. Elemental X-ray maps indicate that diffusion of carbon from the liquid Stellite to the austenitic stainless steel takes place along grain boundaries resulting in the formation of chromium carbide “arms” that penetrate along the austenite grain boundaries in the interfacial region.  相似文献   

2.
In the present study, the microstructure, mechanical properties and corrosion resistance of AISI 316L austenitic stainless steel to ASTM A335-P11 low alloy steel dissimilar joints, which are widely employed in the oil and gas industries especially for manufacturing of heat exchangers over 600°C, were investigated. For this purpose, two filler metals of ER309L and ERNiCrMo-3 were selected to be used with GTAW process. The results of microstructural evaluation revealed that the ERNiCrMo-3 weld metal contains dendritic and interdendritic zones, and the ER309L weld metal microstructure includes skeletal ferrites in an austenitic matrix. The maximum impact fracture energy and microhardness values were obtained for the ERNiCrMo-3 weld metal specimens; however, no significant difference was observed between the tension properties. The corrosion test results showed that the ERNiCrMo-3 has a higher corrosion resistance than ER309L. Finally, it was concluded that ERNiCrMo-3 would be a suitable filler metal for joining AISI 316L to A335-P11 for a variety of applications.  相似文献   

3.
This paper presents the results of an investigation on autogeneous laser welding of AISI 420 stainless steel to kovar alloy using a 100 W pulsed Nd:YAG laser. The joints had a circular geometry and butt welded. The joints were examined by optical microscope for cracks, pores and for determining the weld geometry. The microstructure of the weld and the heat affected zones were investigatedby scanning electron microscope. The austenitic microstructure was achieved in the weld. The morphology of weld zone solidification was basically cellural, being influenced by the temperature gradient. It was found that the start of solidification in the kovar side of weld zone occurred by means of epitaxial growth. When the temperature gradient was high, the columnar grains were created in the fusion boundary of 420 stainless steel side toward weld zone. Measurements taken by X-ray spectrometry for dispersion of the energy in the weld zone indicated a significantly heterogeneous distribution of chromium element. The variations in chemical compositions and grains morphologies significantly alter the Vickers microhardness values in the weld zone.  相似文献   

4.
The discrete microstructural characterization and the formation of stainless steel layer on mild steel where produced in cladding deposits, and fusion boundary region were investigated using tungsten inert gas (TIG) arc, high current pulsed arc and constricted plasma arc. The experimental procedure involved making bead-on-plate method for controlled travel speed, employing filler metal by using tungsten inert gas arc, pulsed current gas tungsten arc and transferred plasma arc, with subsequent sectioning and examination of the reaction interface. For TIG arc cladding, using filler metal of small diameter the deposit does not become stainless steel, but on using 3.2 mm diameter filler metal it becomes stainless steel with less than 50% dilution. For pulsed arc cladding, the complete stainless steel is not obtained on account of the existence of an incomplete mixture, particularly at the fusion boundary region. However, on using a large diameter filler metal at a pulse frequency of 500 Hz, the complete stainless steel microstructure has been accomplished. The plasma arc cladding can be achieved in such a way that the conversion into stainless steel on the mild steel surface — which is the microstructures of cellular austenite in cladding deposit and cellular dendritic austenite containing δ or σ-phase in fusion boundary region — is possible irrespective of the melt penetration and the dilution. The following conditions were found to be beneficial for the formation of stainless steel microstructure layer on the mild steel: using large diameter filler metal, below 50% dilution, and further rendering arc localized and constricted.  相似文献   

5.
This investigation has been performed to characterize dissimilar metal welds between type 310 austenitic stainless steel (SS) and Inconel 657 superalloy. The welds were produced using four types of filler materials: Inconel 82, Inconel A, Inconel 617, and type 310 SS. The weldments were characterized in detail using optical metallography and scanning electron microscopy. It can be concluded that Inconel A weld metal does not promote severe hot cracking. Continuous NbC precipitates in the Inconel 82 weld metal can sensitize the weld metal to solidification cracking. The presence of high amounts of Mo in Inconel 617 weld metal led to the formation of brittle phases. In addition, continuous precipitates were observed in the 310 SS weld metal, which can lead to poor resistance of the weld metal to hot cracking. In the aged condition, Inconel 82 and Inconel A exhibited good thermal stability, whereas Inconel 617 and type 310 SS exhibited poor thermal stability. Also, after subjecting the heat-affected zone and interface between Inconel weld metal and base metals to aging treatment, unmixed zone of Inconel 657 base metal side has disappeared. Elimination of this region can be attributed to high-temperature interdiffusion of alloying elements. Finally, it is found that Inconel A and Inconel 82 weld metals are the best choices for the dissimilar welds performed here, respectively.  相似文献   

6.
Resistance spot welding was used to join austenitic stainless steel and galvanized low carbon steel. The relationship between failure mode and weld fusion zone characteristics (size and microstructure) was studied. It was found that spot weld strength in the pullout failure mode is controlled by the strength and fusion zone size of the galvanized steel side. The hardness of the fusion zone which is governed by the dilution between two base metals, and fusion zone size of galvanized carbon steel side are dominant factors in determining the failure mode.  相似文献   

7.
A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint.  相似文献   

8.
The current study presents some fundamental observations on the effects of the welding heat input in the chemical composition, microstructure, hardness and petroleum corrosion resistance of the fusion zone, formed by the AWS E309MoL austenitic stainless steel covered electrode and the AISI 410S ferritic stainless steel, being a dissimilar welding procedure. Such welding configurations are widely used as an overlay of equipment in the petroleum and gas industries. The welds were performed with the application of three different levels in heat inputs (6, 9 and 12 kJ/cm). Samples of the weld metals were conventionally prepared for the microstructural characterization by light microscopy and scanning electron microscopy. A corrosion test with samples immersed in heavy oil heated at 300 °C, was carried out for a period of 60 h. The corrosion rate was determined by the weight loss given after the aforesaid test. The fusion zone microstructure has a typical δ-ferrite acicular morphology, from which the level of δ-ferrite was duly altered with the increases of the welding heat input, due to the variations in the composition of the weld metal caused by dilution. It was also concluded that the chemical composition and the weld metal microstructure had a slight influence in the material’s corrosion rate. As a matter of fact, the corrosion rate of the weld metals evaluated herein, was considered satisfactory with few variations between the welding heat inputs duly applied.  相似文献   

9.
Abstract

Instrumented impact testing was used to investigate the effects of aging on the impact deformation and fracture of different weldments of an AISI type 316L stainless steel plate and a superduplex stainless steel plate. Aging at 800C of metal inert gas MIG and laser beam LB weldments of the 316L stainless steel plate produced a precipitation of sigma phase, which was more intense in the MIG weldments. Correspondingly, the MIG weldments showed a noticeable decrease in impact energy and in impact yield and maximum loads as the aging time was increased. The LB weldments, on the other hand, showed an initial decrease in absorbed energy followed by a noticeable increase, because of the appearance of delaminations during the fracture event. Aging at 900C of the parent metal and of LB and plasma arc PA weldments of the superduplex stainless steel plate produced a precipitation of sigma phase which was much more intense in the parent metal. Both the parent metal and the weldments showed a noticeable decrease in impact energy and in impact yield and maximum loads as the aging time was increased. These weldments were found to be more sensitive to the precipitation of sigma phase than the austenitic stainless steel weldments.  相似文献   

10.
Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The pit-protection potential of these alloys was more noble than the corrosion potential, indicating the higher repassivation tendency of actively growing pits in these alloys. The accelerated leaching study conducted for the above alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impedes the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.  相似文献   

11.
A three-step etching technique, utilizing a Glyceregia etch, a 10% oxalic acid electrolytic etch, and a boiling Murakami's reagent etch, was employed to reveal the weld structure in a commercial duplex stainless steel alloy. Color metallography indicated that chromium segregation, which is residual from significant phase composition differences in the original ferrite-austenite base metal structure, existed in all areas of the weld heat-affected zone. Evidence of fine chromium-rich precipitates distributed homogenously within the ferrite grains and heterogenously at ferrite subgrain boundaries in the middle and near heat-affected zone regions was observed and correlated with local variations in chromium content.  相似文献   

12.
Abstract

Evaluation of the creep behaviour of 2.25Cr–1Mo and 9Cr–1Mo ferritic steel base metals, 9Cr–1Mo steel weld metal, and 2.25Cr–1Mo/9Cr–1Mo ferritic–ferritic dissimilar weld joints has been carried out at 823 K in the stress range 100–260 MPa. The weld joint was fabricated by shielded metal arc welding using basic coated 9Cr–1Mo electrodes. Investigations of the microstructure and hardness variations across the joint in the as welded, post-weld heat treated (973 K/1 h), and creep tested conditions were performed. The heat affected zone (HAZ) in both the steels consisted of a coarse prior austenitic grain region, a fine prior austenitic grain region, and an intercritical structure. In the post-weld heat treated condition, a white etched soft decarburised zone in 2.25Cr–1Mo steel base metal and a black etched hard carburised zone in 9Cr–1Mo steel weld metal around the weld fusion line developed. Hardness troughs also developed in the intercritical HAZ regions of both the steels. The width of the carburised and decarburised zones and hardness differences of these zones were found to increase with creep exposure. The 9Cr–1Mo steel weld metal showed higher creep strength compared to both the base metals. The 9Cr–1Mo steel base metal exhibited better creep resistance than the 2.25Cr–1Mo steel base metal at lower applied stresses. The dissimilar joint revealed lower creep rupture strength than both the base metals and weld metal. The creep strain was found to concentrate in the decarburised zone of 2.25Cr–1Mo steel and in the intercritical HAZ regions of both the steels. Creep failure in the stress range examined occurred in the intercritical HAZ of 2.25Cr–1Mo steel even though this region showed higher hardness than the decarburised zone. Extensive creep cavitation and cracks were observed in the decarburised zone.  相似文献   

13.
The use of austenitic stainless steel type AISI 317L has increased in the last years, in substitution to AISI 316L and other austenitic grades. The higher Mo content (3.0 wt.%. at least) gives higher corrosion resistance to AISI 317L. However, some concern arises when this material is selected to high temperature process services in refineries. Microstructural changes such as chromium carbide precipitation and sigma phase formation may occur in prolonged exposure above 450 °C. In this work, the microstructure evolution of AISI 317L steel during aging at 550 °C was analyzed. Thermodynamic calculations with Thermocalc® and detailed microstructural analysis were performed in steel plate base metal and in weld metal produced by GTAW process. The aging for 200, 300 and 400 h promoted gradual embrittlement and deterioration of corrosion resistance of both weld and base metal. The results show that the selection of AISI 317L steel to services where temperatures can reach 550 °C is not recommended.  相似文献   

14.
Dissimilar metals of 1045 carbon steel and 304 stainless steel are joined successfully by friction welding. The microstructure variation and mechanical properties are studied in detail. The weld interface can be clearly identified in central zone, while the two metals interlock with each other by the mechanical mixing in peripheral zone. On carbon steel side, a thin proeutectoid ferrite layer forms along weld interface. On stainless steel side, austenite grains are refined to submicron scale. The δ-ferrite existing in stainless steel decreases from base metal to weld interface and disappears near the weld interface. Severe plastic deformation plays a predominant role in rapid dissolution of δ-ferrite compared with the high temperature. Carbide layer consisting of CrC and Cr23C6 forms at weld interface because of element diffusion. Metastable phase CrC is retained at room temperature due to the highly non-equilibrium process and high cooling rate in friction welding. The fracture appearance shows dimple fracture mode in central zone and quasi-cleavage fracture mode in peripheral zone. Further analysis indicates that welding parameters govern tensile properties of the joint through influencing the thickness of carbide layer at weld interface and heterogeneous microstructure in thermo-mechanically affected zone on carbon steel side.  相似文献   

15.
The instrumented indentation test is a promising nondestructive technique for evaluating mechanical properties of metallic materials. In this study, the localised mechanical properties of welded joint of 304 austenitic stainless steel were characterised with the instrumented indentation test. The single V-groove welded joint was produced using the electric arc welding. A series of instrumented indentation tests were carried out at different regions, including base material, weld zone and heat-affected zone (HAZ). A soft zone regarding strength properties was found in the coarse-grain HAZ. The results show that the HAZ has the lowest yield strength and tensile strength (263.6 MPa, 652.5 MPa) compared with the base material (307.4 MPa, 807.9 MPa) and the weld zone (285.6 MPa, 702.1 MPa). In addition, characterisations of microstructure, microhardness and conventional tensile tests have been performed for comparison. The results reveal that the localised mechanical properties of welded joint of austenitic stainless steel can be represented effectively with the instrumented indentation technique.  相似文献   

16.
Shear punch test technique is a novel method for zonular evaluation of weldment mechanical behavior. In this study, changes in the mechanical behavior of different zones of an Inconel 617/310 austenitic stainless steel dissimilar joint, including base metal, heat affected and weld metal zones were investigated by shear punch test. ERNiCrCoMo1 (Inconel 617) filler metal was used in order to achieve dissimilar joint through gas tungsten arc welding process. Furthermore, microstructural evaluation was performed using optical and scanning electron microscopies. The results indicated that by increasing the distance from weld centerline, hardness and ultimate strength values were initially decreased and then increased while ductility was constantly decreased. In this regard, the difference in grain sizes and the type of precipitates were considered the effective parameters.  相似文献   

17.
In this research, joining austenitic to martensitic stainless steels and effect of welding power on microstructure and mechanical properties of the joint were investigated. Microstructure of the weld was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) linked to SEM was used to determine chemical composition of phases and distribution of chromium (Cr), nickel (Ni) and iron (Fe) at the joint interface. Microhardness and tensile strength tests were performed. Finally fracture surface of samples were studied by SEM. Results showed that an interlayer composed of 80% ferrite and 20% martensite has formed at the joint interface and there were three different zones in the heat affected zone (HAZ) of two steels. Different forms of austenite phase including widmanstatten austenite (Wγ), allotriomorphic austenite (Aγ) and intergranular austenite (Iγ), delta ferrite (δ-ferrite) and chromium carbide (Cr23C6) have formed in the HAZ of austenitic stainless steel. Fractography of tension samples indicated that in all samples fracture occurred in austenitic stainless steel HAZ. The strength and hardness of the joint increased and HAZ length decreased with increasing of welding power.  相似文献   

18.
A comparative study was made of the fracture behavior of austenitic and duplex stainless steel weldments at cryogenic temperatures by impact testing. The investigated materials were two austenitic (304L and 316L) and one duplex (2505) stainless steel weldments. Shielded metal arc welding (SMAW) and tungsten inert gas welding (TIG) were employed as joining techniques. Instrumented impact testing was performed between room and liquid nitrogen (?196 °C) test temperatures. The results showed a slight decrease in the impact energy of the 304L and 316L base metals with decreasing test temperature. However, their corresponding SMAW and TIG weld metals displayed much greater drop in their impact energy values. A remarkable decrease (higher than 95%) was observed for the duplex stainless steel base and weld metals impact energy with apparent ductile to brittle transition behavior. Examination of fracture surface of tested specimens revealed complete ductile fracture morphology for the austenitic base and weld metals characterized by wide and narrow deep and shallow dimples. On the contrary, the duplex stainless steel base and weld metals fracture surface displayed complete brittle fracture morphology with extended large and small stepped cleavage facets. The ductile and brittle fracture behavior of both austenitic and duplex stainless steels was supplemented by the instrumented load–time traces. The distinct variation in the behavior of the two stainless steel categories was discussed in light of the main parameters that control the deformation mechanisms of stainless steels at low temperatures; stacking fault energy, strain induced martensite transformation and delta ferrite phase deformation.  相似文献   

19.
This paper deals with the hybrid (plasma + gas tungsten arc) welding properties of 12 mm thick modified 12% Cr ferritic stainless steel complying with EN 1.4003 and UNS S41003 steels with a carbon content of 0.01% to improve the weldability. The root passes of the butt welds were produced with plasma arc welding (PAW) without filler metal while gas tungsten arc welding (GTAW) was used to accomplish filler passes with 309 and 316 austenitic stainless steel type of consumables, respectively. The joints were subjected to tensile and bend tests as well as Charpy impact toughness testing at −20 °C, 0 °C and 20 °C. Examinations were carried out in terms of metallography, chemical analysis of the weld metal, ferrite content, grain size and hardness analyses. Although 309 consumables provided higher mean weld metal toughness values compared to 316 (90 J vs. 75 J), 316 type of consumables provided better mean HAZ toughness data for the joints (45 J vs. 20 J) at −20 °C. Toughness properties of the welds correspond with those of microstructural features including grain size and ferrite content.  相似文献   

20.
The relatively complex microstructures developed at the interface between ferritic steel and weld metal on austenitic-ferritic transition joints have been examined by metallographic observation and by hardness tests in the as-welded condition and in the as-welded-and-tempered condition. Both austenitic stainless steel and nickel-based filler metals were used in welds. On as-welded specimens a sharp change of hardness in low-alloy steel has been measured, with increasing distance from weld metal; the hardness values have been related to the observed metallographic constituents. On post-weld heat treated specimens, the behaviour is different according to the composition of filler material, either austenitic steel or nickel-based alloy. In the case of austenitic filler material, a dark-etching narrow diffusion region of carbon toward weld metal is formed, with an adjacent markedly decarburized zone, exhibiting the minimum microhardness values in a narrow band of about 60 micrometres. Since this sharp structural variation is recorded just in the zone where often failures occur, the final post-weld heat treatment appears to be proposed with due caution. In the case of nickel-based filler material, carbon diffusion is inhibited by the precipitation of alloy carbides at the weld interface. This determines a more homogeneous heat affected zone (HAZ) in the ferritic steel and a reduced decarburization near the fusion line after a post-weld heat treatment, confirming the reasons of the preference recognized to this filler material, especially when service temperature is elevated and submitted to frequent changes, or whenever a post-welded heat treatment is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号