首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Grain refinement of Al–Mg–Li alloys for superplasticity prepared by thermomechanical processing has been a difficult task due to the cracking of these alloys when rolled at low temperatures. Raising the rolling temperature resulted in enhanced rollability of these sheets with no cracks but very coarse grains after recrystallisation. To solve this problem, a cross rolling schedule was developed to hinder fracture and simultaneously provide enough stored energy for following recrystallisaiton coupled by lowering the reheating temperature. Fine, equiaxed grains of ~7 μm was achieved by this new approach and maximum total elongation of about 915% was obtained when deformed at a temperature of 525°C and an initial strain rate of 1×10?3 s?1.  相似文献   

2.
Abstract

Experiments were carried out to determine the superplastic properties of the Al–33Cu eutectic alloy in an as extruded condition. It is shown that the stress–strain curves do not attain a steady state condition and, except at high strain rates greater than ~10?2 s?1, the curves show strain hardening due to concurrent grain growth. There is a sigmoidal relationship between stress and strain rate, with a maximum strain rate sensitivity of ~ 0·5 at intermediate strain rates in region 2 and a decrease in the strain rate sensitivity to ~ 0·3 at low strain rates in region 1. The maximum elongation to failure in these experiments is ~1400% at an initial strain rate of 6·7 × 10?5 s?1 and there is a decrease in the elongations to failure at both lower and higher strain rates. From detailed experimental measurements of grain growth, it is demonstrated by calculation that there is a genuine region 1 at low strain rates in this alloy in the as extruded condition.

MST/911  相似文献   

3.
In the present study, the superplastic behavior of five Al–Mg–Zn alloys in coarse grain size condition has been studied. The alloys were melted, cast into ingots and hot rolled. The grain size of the rolled samples was 69, 45, 40, 30 and 35 μm. Tensile test specimens were machined from the hot rolled plate in the rolling direction. Strain-rate-change (SCR) tests at temperatures between 300 and 450 °C and strain rates between 1 × 10−4 and 1 × 10−1 s−1 were carried out to determine the strain rate sensitivity of the flow stress. Finally, elongation-to-failure tests were conducted at those temperatures and strain rates, where the alloys showed high strain rate sensitivity. A maximal elongation of 400% was obtained for the 3.89 wt.% Zn alloy. The results are explained in terms of solute drag creep as the principal deformation mechanism.  相似文献   

4.
Abstract

The hot deformation behaviour and microstructural evolution in Ti–6Al–2Zr–1Mo–1V alloys have been studied using isothermal hot compression tests. The processing map was developed at a true strain of 0·7 in the temperature range 750–950°C and strain rate range 0·001–10 s?1. The corresponding microstructures were characterised by means of a metallurgical microscope. Globularisation of lamellae occurring to a greater extent in the range 780–880°C and 0·001–0·01 s?1 had a peak power dissipation efficiency of 58% at about 850°C and 0·001 s?1. The specimens deformed in 750–880°C and 0·01–10 s?1 showed an instability region of processing map, whereas the specimens deformed in 880–950°C and 1–10 s?1 indicated three kinds of flow instabilities, i.e. macro shear cracks, prior beta boundary cracks and flow localisation bands.  相似文献   

5.
Abstract

Superplasticity in a 7055 aluminum alloy subjected to intense plastic straining through equal channel angular extrusion (ECAE) was studied in tension over a range of strain rates from 1.4 × 10-5 to 5.6 × 10-2 s-1 in the temperature interval 300 - 450 °C. The alloy had a grain size of ~ 1 μm. A maximum elongation to failure of ~750% occurred at a temperature of 425 °C and an initial strain rate of 5.6 × 10-4 s-1, with a strain rate sensitivity coefficient m of about 0.46. The highest m value was ~0.5 at a strain rate of 1.4 × 10-3 s-1 and T≥ 425 °C. Moderate superplastic properties with a total elongation of about 435% and m of ~0.4 were recorded in the temperature interval 350 - 400 °C; no cavitation was found. It was shown that the main feature of superplastic behaviour of the ECAE processed 7055 aluminum alloy is a low yield stress and strong strain hardening during the initial stages of superplastic deformation. Comparing the present results with the superplastic behaviour of the 7055 Al subjected to thermomechanical processing (TMP), the highest tensile elongation in the ECAE processed material occurred at lower temperatures because ECAE produces a finer grained structure.  相似文献   

6.
The response of extruded Mg/nano–Al2O3 (1 vol.%) composite to hot working in the temperature range 300–500 °C and strain rate range 0.0003–10 s?1 has been characterized using processing map and kinetic analysis. The hot working window for the composite occurs at strain rates >0.1 s?1 and the optimum range of temperature is 400–450 °C. In this window, the behavior of the composite is similar to that of the matrix and is controlled by the grain boundary self-diffusion. At lower strain rates, however, the composite exhibits much higher apparent activation energy than that for lattice self-diffusion unlike the matrix material. The deformed microstructures revealed that the prior particle boundaries decorated by the nano-Al2O3 particles, are stable and do not slide, rotate or migrate but kink after compressive deformation and as such contribute to the high temperature strength of the composite.  相似文献   

7.
Abstract

Microstructural evolution and flow behaviour during hot compression of twin roll cast ZK60 magnesium alloy were characterised by employing deformation temperatures of 300, 350 and 400°C and strain rate ranging from 10?3 to 100 s?1. When compressed at 10?3 s?1, all stress–strain curves at different temperatures (300, 350 and 400°C) showed a flow softening behaviour due to active dynamic recrystallisation. When compressed at 10?2 s?1 and elevated temperatures (300, 350 and 400°C), all stress–strain curves showed a flow stress drop after peak stress due to twinning for 300 and 350°C deformation and recrystallisation for 400°C deformation. The balance between shear deformation and recrystallisation resulted in a steady flow behaviour after the true strain reached 0·22. When strain rate increased to 10?1 s?1, a small fraction of dynamic recrystallisation in shear deformation region was responsible for slight flow softening behaviour during compression. A flow hardening appeared due to basal and non-basal slips when deformed at 100 s?1. It is suggested that the flow behaviour during hot compression of twin roll cast ZK60 alloy depends on the separating effect or combined effects of shear deformation, twinning and recrystallisation.  相似文献   

8.
Abstract

The possibility of high strain rate superplasticity (HSRS) was examined over a wide range of temperatures in a powder metallurgy aluminium alloy 6061/SiCp composite with a relatively large SiC particle size of ~8 μm. A maximum tensile elongation of 350% was obtained at 600°C and 10-2 s-1. Tensile elongations over 200% were obtained in a narrow temperature range between 590 and 610°C at high strain rates of 10-2 and 10-1 s-1. The current testing temperature range could be divided into two regions depending on the rate-controlling deformation mechanism. Region I is in the lower temperature range from 430 to 490°C, where lattice diffusion controlled dislocation climb creep (n = 5) is the rate-controlling deformation process, and region II is in the higher temperature range from 520 to 610°C, where lattice diffusion controlled grain boundary sliding controls the plastic flow. An abnormally large increase in activation energy was noted at temperatures above 590°C, where large tensile elonga tions over 200% were obtained at high strain rates. This increase in activation energy and high tensile ductility may be explained in terms of presence of a liquid phase created by partial melting, but such evidence could not be provided by the current differential scanning calorimetry (DSC) test. This may be because the DSC is not sensitive enough to detect the small amount of liquid phase.  相似文献   

9.
Abstract

Deformation behaviour of AA6061 alloy was investigated using uniaxial compression tests at temperatures from 400 to 500°C and strain rates from 0·01 to 1 s?1. Stress increases to a peak value, then decreases monotonically until reaching a steady state. The dependence of stress on temperature and strain rate was fitted to a sinh-Arrhenius equation and characterised by the Zener–Hollomon parameter with apparent activation energy of 208·3 kJ mol?1. Grain orientation spread analysis by electron backscattered diffraction indicated dynamic recovery and geometrical dynamic recrystallisation during hot compression. Deformation at a faster strain rate at a given temperature led to finer subgrains, resulting in higher strength. Dynamic precipitation took place concurrently and was strongly dependent on temperature. Precipitation of Q phase was found in the sample deformed at 400°C but none at 500°C. A larger volume fraction of precipitates was observed when samples were compressed at 400°C than at 500°C.  相似文献   

10.
A maximum elongation of 250% was achieved in a Al–13 wt% Si eutectic alloy (∼ 18 μm grain size) when deformation was carried out at 557°C at a strain rate of 1×10-2 s-1. The shapes of the true stress–true strain curves obtained in this investigation are different from those reported by Chung and Cahoon [1]. It is felt that this is due to differences in the processing of the alloys used in the two investigations. The higher elongation obtained at a strain-rate of 1×10-2 s-1 as compared to 4.6×10-4 s-1 is attributed to a higher strain rate sensitivity, lower rain and particle coarsening and a lower level of cavitation at the former strain rate. It is believed that the mechanism of high temperature flow in this system is by grain boundary sliding accommodated by dislocation motion. The latter is rate controlled by the climb of dislocations over hard Si particles. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract

As rolled TC21 titanium alloy was subjected to isothermal constant strain rate tensile tests using an electronic tensile testing machine. After tensile deformation, the alloys were subjected to double annealing. Superplastic behaviour and microstructure evolution were systematically investigated. Experimental results show that as rolled TC21 alloy exhibits good superplasticity at temperatures ranging from 870 to 930°C and strain rates ranging from 3×10?4 to 3×10?2 s?1. A maximum elongation of 373·3% was obtained at 910°C and 3×10?4 s?1. In addition, the alloy microstructure comprises α and β phases during plastic deformation. The primary α-grains aggregate and merge to form new crystal grains with irregular grain boundaries because of dynamic recrystallisation. Furthermore, the primary α phase content gradually decreases with increasing temperature. The resulting microstructure after deformation and double annealing is a duplex microstructure comprising a primary equiaxed α phase and a β-transformed lamellar structure. The acicular α phase transformed from the β phase is mutually interlaced as a basketweave structure after deformation at 930°C and double annealing.  相似文献   

12.
Superplasticity of the TiNp/2014AI composite prepared by powder metallurgy method was investigated by tensile tests conducted at different temperatures (773, 798, 818 and 838 K) with different strain rates range from 1·7×10° to 1·7×10?3s?1. Results show that a maximum elongation of 351% is achieved at 818 K and 3·3·10?1s?1. At different deformation temperatures, the curves of m value can be divided into two stages with the variation of strain rate and the critical strain rate is 10?1 s?1. Superplastic deformation activation energy in the TiNp/2014AI composite is 417 kJ mol?1, which is related to liquid phase formation at triple points of grain boundaries and interfaces between the matrix and the reinforcement. Superplastic deformation mechanism of the TiNp/2014AI composite is grain boundary sliding accommodate mechanism when the strain rate is lower than 10?1 s?1, and transfers to grain boundary sliding accommodation mechanism plus liquid phase helper accommodation mechanism when the strain rate is higher than 10?1 s?1  相似文献   

13.
A compressive split-Hopkinson pressure bar apparatus and transmission electron microscopy (TEM) are used to investigate the deformation behaviour and microstructural evolution of Ti–15Mo–5Zr–3Al alloy deformed at strain rates ranging from 8 × 102 s−1 to 8 × 103 s−1 and temperatures between 25 °C and 900 °C. In general, it is observed that the flow stress increases with increasing strain rate, but decreases with increasing temperature. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result, primarily, of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. The amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.  相似文献   

14.
Abstract

The mechanisms of hot deformation in the β titanium alloy Ti–10V–2Fe–3Al have been characterised in the temperature range 650–850°C and strain rate range 0·001–100 s-1 using constant true strain rate isothermal compression tests. The β transus for this alloy is ~790°C, below which the alloy has a fine grained duplex +β structure. At temperatures lower than the β transus and lower strain rates, the alloy exhibits steady state flow behaviour while at higher strain rates, either continuous flow softening or oscillations are observed at lower or higher temperatures, respectively. The processing maps reveal three different domains. First, in the temperature range 650–750°C and at strain rates lower than 0·01 s-1, the material exhibits fine grained superplasticity marked by abnormal elongation, with a peak at ~700°C. Under conditions within this domain, the stress–strain curves are of the steady state type. The apparent activation energy estimated in the domain of fine grained superplasticity is ~225 kJ mol-1, which suggests that dynamic recovery in the β phase is the mechanism by which the stress concentration at the triple junctions is accommodated. Second, at temperatures higher than 800°C and strain rates lower than ~0.1 s-1, the alloy exhibits large grained superplasticity, with the highest elongation occurring at 850°C and 0.001 s-1; the value of this is about one-half of that recorded at 700°C. The microstructure of the specimen deformed under conditions in this domain shows stable subgrain structures within large β grains. Third, at strain rates higher than 10 s-1 and temperatures lower than 700°C, cracking occurs in the regions of adiabatic shear bands. Also, at strain rates above 3 s-1 and temperatures above 700°C, the material exhibits flow localisation.  相似文献   

15.
Abstract

Three non-heat-treatable aluminium based materials (AA 1050, AA 1050+1%Mn, and AA 1050+1%Mg) were deformed by plane strain compression (strains of 0·5 to 2, strain rates of 0·25 to 25 s?1) at elevated temperature (300 to 500°C). The resulting microstructures and textures were studied using optical and back scattered electron microscopy and neutron diffraction. Trends in the development of the deformation microstructure and texture with deformation parameters were noted. It was found that the amount of cube texture in the deformed material decreases as the strain increases. The Zener–Hollomon parameter is not suitable for describing the evolution of cube texture during hot deformation in AA 1050. The addition of 1%Mn or 1%Mg to AA 1050 has little effect on the trends of texture development during hot working. The subgrain size in these alloys decreases with increasing Zener–Hollomon parameter, but the strain has little effect. The misorientation between neighbouring subgrains appears to be approximately independent of deformation parameters in the range of deformation conditions studied.

MST/3472  相似文献   

16.
Abstract

Dynamic recrystallisation behaviour of an as cast 0Cr18Ni9Ti stainless steel during hot deformation was investigated by hot compression test at a temperature range of 950–1200°C and strain rate of 5 × 10-3–1 × 10-1 s-1. Change of austenite grain size owing to dynamic recrystallisation was also studied by microstructural observation. The experimental results showed that the hot deformation conditions, such as temperature, strain, and strain rate determine the dynamic recrystallisation behaviour for the as cast stainless steel, and the dynamically recrystallised grain size is determined by the deformation conditions and is independent of the strain.  相似文献   

17.
Deformation characteristics and range of optimized hot working parameters of a 6.5 tons GH3535 superalloy ingot with an average columnar grain size of over 1?mm in diameter were investigated. Axial compression experiments were performed in temperature range of 900–1240?°C and strain rate range of 0.001–30?s?1 at a total strain of 0.8. The hot deformation activation energy of the experimental GH3535 alloy is calculated to be 483.22?kJ/mol. Furthermore, the deformation constitutive equation is established by the peak stresses obtained from the stress-strain curves under various conditions. The hot working window of the alloy ingot at a strain of 0.8 can be preliminarily discussed based on the deformed microstructures and processing maps. The optimized hot working window was thus determined at the strain of 0.95 for 6.5 tons GH3535 alloy ingot by the supplementary compression tests. A large-size GH3535 superalloy ring with a dimension of Φ3010?mm?×?410?mm was ultimately manufactured.  相似文献   

18.
A processing map for extruded AZ31-1Ca-1.5NAl composite has been developed, which exhibited four important domains for hot working. The corresponding temperatures and strain rates associated with these domains are: (1) 250–350°C and 0.0003–0.01 s?1; (1A) 350–410°C and 0.0003–0.01 s?1; (2): 410–490°C and 0.002–0.2 s?1; and (3) 325–410°C and 0.6 s?1 to 10 s?1. Dynamic recrystallization (DRX) occurred in all the four domains although different slip mechanisms and recovery processes are involved. Basal slip and prismatic slip dominates deformation in Domains 1 and 1A, respectively, with recovery occurring by climb that is lattice self-diffusion controlled. However, because of the high strain rates in Domain 3, recovery occurs through a climb process, controlled by grain boundary self-diffusion. The recovery mechanism in Domain 2 is cross-slip assisted by pyramidal slip along with basal and prismatic slip. The grain size has a linear relation with Zener–Hollomon parameter in all the domains. At high strain rates, the composite undergoes shear fracture at lower temperatures and intercrystalline fracture at higher temperatures. All of the identified DRX domains are suitable for conducting bulk metal forming processes although the one with the highest strain rates (Domain 3) is preferred for achieving high productivity.  相似文献   

19.
The hot workability of SiCp/2024 Al composite was explored by conducting hot compression simulation experiments on Gleeble-3500 under temperatures of 300–500 °C and strain rates of 10?3–1 s?1. Constitutive equation was developed through hyperbolic sine function, and the activation energy was calculated to be 151 kJ mol?1. The hot processing maps referring to dynamic material model were drawn in a true strain range from ?0.2 to ?0.8. At the strain of ?0.8, the recommended regions in processing map contained two domains: superplastic domain (500 °C, 10?3 s?1) with an efficiency of about 0.72 and DRX domain (500°C, 1 s?1) with an efficiency of about 0.45. Together with macrostructure and microstructure observations, it was suggested to remove the DRX region.  相似文献   

20.
Abstract

The mechanical behaviour and microstructural evolution in tension of NiAl - 9Mo eutectic alloy at 1100 ° C and strain rates from 10-5 to 10-3 s-1 have been investigated. High values of strain rate sensitivity index, but relatively small elongations between 150 and 200%, have been observed. Tensile specimens with various strains were quenched in water to preserve the dislocation structures for TEM examination. The TEM results show that the dislocation configuration and density change significantly with an increase in strain rate, and therefore correspond to different deformation mechanisms. At a low strain rate (5.5 × 10-5 s-1), the dislocation density is relatively low and dislocation activity is regarded as an accommodation mechanism for grain boundary sliding. In contrast, the high density of dislocations as well as clear subboundaries observed in grains at a high strain rate (5.5 × 10-4 s-1) suggest that the dislocations are active directly in response to the applied stress as well as participating in the relaxation process of grain boundary sliding by subboundary formation. Thus, grain boundary sliding is mainly responsible for superplastic deformation at a low strain rate, while superlastic deformation at a high strain rate is controlled by the combined operation of both grain boundary sliding and dynamic recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号