首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《材料科学技术学报》2019,35(6):1081-1087
Up to now, the exact reason of hydrogen-induced fracture for ferrite-pearlite (FP) steel is still not fully understood. This study presents detail observations of the feature beneath the fracture surface with the aim to reveal the hydrogen-induced cracking initiation and propagation processes. Slow strain rate tensile (SSRT) testing shows that the FP steel is sensitive to hydrogen embrittlement (HE). Focused ion beam (FIB) was used to prepare samples for TEM observations after HE fracture. The corresponding fractographic morphologies of hydrogen charged specimen exhibit intergranular (IG) and quasi-cleavage (QC) fracture feature. Pearlite colony, ferrite/pearlite (F/P) boundary and the adjacent ferrite matrix are found to be responsible for the initial HE fracture and the subsequent propagation. With increasing of the stress intensity factor, fracture mode is found to change from mixed IG and QC to entire QC feature which only occurs at the ferrite matrix. No crack is observed at the ferrite/cementite (F/C) interface. This may be mainly due to the limited pearlite lamella size and relatively low interface energy.  相似文献   

2.
Abstract— The fracture behaviour of high strength steels under the influence of hydrogen was studied, with special emphasis on the critical condition for the formation of intergranular (IG) cracks. Mechanical tests were carried out on cathodically charged specimens subjected to both a constant load and a constant displacement under a variety of hydrogen-charging conditions. Experimental analyses show that a high local hydrogen concentration plus a high stress intensity at a quasi-cleavage (QC) crack tip are required to initiate intergranular cracking. The condition for continued intergranular crack propagation, leading to micro-void coalescence (MVC), is determined by the combined effect of the speed of crack propagation together with the rate of hydrogen diffusion. A quasi-cleavage crack triggers the onset of intergranular crack growth irrespective of the test control parameters, i.e. constant loading or constant displacement conditions.
A fracture map is proposed relating to the boundary conditions between QC, IG and MVC cracking, which will assist further research.  相似文献   

3.
对不同缺口的Stellite12钴基合金试样(700℃/20℃进行不同次数的热循环冲击和未冲击)进行原位拉伸,并结合试验数据的分析以及断口形貌的扫描电镜观察,分析了Stellite12钴基合金热循环冲击前后的拉伸断裂过程和断裂机理。结果发现:热循环冲击后不同半径试样的断裂过程略有不同,热循环冲击后的小圆弧缺口试样在缺口根部产生表面微裂纹,试样边缘及微裂纹两侧产生氧化微孔;原位拉伸时,该试样热冲击过程产生的裂纹先向试样厚度方向扩展,待厚度方向贯通,然后裂纹尖端的基体发生变形、黑相(白相)穿晶开裂、少量沿氧化微孔裂开,试样瞬间发生断裂;而经历热循环冲击后的大圆弧试样表面并未产生明显的裂纹,拉伸加载过程经历大圆弧根部基体变形、黑白相内开裂、边缘氧化微孔张开,试样突然断裂;对于未冲击试样,在加载过程中,试样的断裂过程经历基体变形、黑白相内部开裂,能量聚集到一定程度试样突然断裂。对于未热冲击的三种不同试样其断裂过程基本类似,仅仅是由于小圆弧半径的试样应力集中程度更大,从而使得其断裂应力低于平板以及大圆弧试样。  相似文献   

4.
陈新  彭曦  李东威  吕文涛 《工程力学》2013,30(10):227-235
该文引入Rankine最大拉应力准则和Mohr-coulomb剪切破坏准则分别作为岩石基质的拉伸和压剪破裂判据,分析了单轴压缩下裂隙岩体的起裂机制。根据含单个椭圆裂隙的无限域岩体在单轴压缩下的应力理论解,编制了Matlab程序,计算分析了不同短轴与长轴比k和倾角α(加载轴与裂隙长轴间的夹角)下的岩石基质应力集中系数、两种不同起裂机制的破裂函数值、开裂位置和开裂临界荷载。对多裂隙岩体,采用ABAQUS有限元软件进行了应力计算和起裂机制分析。计算结果表明:1)与单裂隙岩体相比,多裂隙岩体的岩石基质应力集中系数略大、起裂临界荷载略小,但起裂位置相同;2)随着裂隙倾角α的增大,岩石基质的主拉应力集中区由裂隙端部附近很小的区域逐渐变为裂隙中部的大面积区域,而主压应力集中区则反之;3)存在临界裂隙倾角α0,其值在45°附近。当裂隙倾角0<α≤α0时,在裂隙端部同时有拉应力和压剪应力集中,拉破裂临界荷载小于压剪破裂临界荷载,但随着裂隙轴比的增大二者逐渐相等,表明岩体受拉破裂和压剪破裂共同影响越来越明显;当α0<α≤90°时,尽管拉破裂临界荷载大于压剪破裂临界荷载,但首先发生在裂隙端部的压剪破裂区范围很小,而随后将在裂隙中部或端部发生大量的拉伸破裂。上述分析结果与实验现象较为吻合。  相似文献   

5.
The stress corrosion cracking (SCC) of austenitic stainless steel was studied via polarization, slow strain rate and scanning electron microscope (SEM) techniques. Many SCC mechanisms have been proposed in which hydrogen embrittlement and passive film rupture-repassivation theories are generally accepted, but they can hardly explain the SCC mechanism of austenitic stainless steel in acidic chloride solution adequately, because the steel is in active dissolution state and cathodic polarization can prevent it from occurring. Our experiment shows that the anodic current increases the creep rate and decreases the plastic strength of the material on single smooth specimen as well as at the SCC crack tip. The fractured surface was characterized as brittle cleavage, while the surface crack of smooth specimen was almost vertical to the tensile strength, which can confirm that the cracks were caused by tensile stresses. A fracture probability competition mechanism of SCC was proposed on the basis of the experimental results combined with the viewpoint of ductile-brittle fracture competition. When the anodic dissolution current is increased to a certain degree, the probability of fracture by tensile stress will exceed that by shear stress, and the brittle fracture will occur. The proposed SCC mechanism can riot only explain the-propagation of SCC cracks but can explain the crack initiation as well. The strain on the surface distributes unevenly when a smooth specimen is deformed, so does the anodic current distribution. The crack will initiate at a point where the anodic current density is large enough to cause the material at a specific point to fracture in brittle manner.  相似文献   

6.
Tensile tests, compression tests, in situ tensile tests, bending tests, tensile fatigue tests and bending fatigue tests were carried out for a TiAl alloy. Based on the global experimental results and microscopic observations of the fracture surfaces and cracking behaviour on the side surfaces of tested specimens, the fracture mechanisms of fully lamellar (FL) TiAl alloys under various loading modes are summarized as following: (1) Cracks initiate at grain boundaries and/or interfaces between lamellae. (2) When a crack extends to a critical length, which matches the fracture loading stress the crack propagates catastrophically through entire specimen. (3) The crack with the critical length can be produced promptly by the applied load in the tensile and bending test or be produced step-by-step by a much lower load in the fatigue tensile test. (4) For fatigue bending tests, the fatigue crack initiates and extends directly from the notch root, then extends step-by-step with increasing the fatigue bending loads. The fatigue crack maybe extends through entire specimen at a lower fatigue load or triggers the cleavage through the whole specimen at a higher load. (5) In compressive tests, cracks initiate and propagate in directions parallel or inclined to the compressive load after producing appreciable plastic strains. The specimen can be fractured by the propagation of cracks in both directions.  相似文献   

7.
Conjoint Action of Stress Corrosion Cracking and Fatigue on Corrosion Fatigue of a High Strength Steel The corrosion fatigue characteristics of a high strength, martensitic steel in 0.5 n NaCl solution is investigated with regard to the fatigue and stress corrosion cracking behaviour of the material. Test parameters are stress ratio and frequency, testing is carried out with fracture mechanics methods, the crack surfaces are examined fractographically. An analysis of the results reveals that corrosion fatigue in high strength steel is caused by fatigue or by stress corrosion cracking, depending on the kinetics of the two processes. Fatigue and stress corrosion cracking do not act cumulative or additive. Instead, the kinetically faster process causes crack advance. The crack growth characteristics are interpreted with respect to the fractographic appearance of the crack surfaces. Corrosion fatigue cracks propagate either intergranular relative to the prior austenite grain boundaries as stress corrosion cracks do or transgranular like fatigue cracks, depending on the crack growth rates of the two processes. Fatigue and stress corrosion cracking do not interact, at least in a measurable degree, because of the different crack path of the two fracture processes. Results can be assessed quantitatively with the “process competition model”.  相似文献   

8.
9.
10.
This paper describes the failure analysis of propeller blade fastening bolts made from martensitic stainless steel 0Cr16Ni5Mo, which was ruptured under service of cathode protection for 5 years. The general crack pattern of the bolts, fractographic features, hydrogen content determination and slow tensile test results are all exhibiting the characteristics of hydrogen embrittlement. Accordingly, hydrogen diffusion driven by hydrogen concentration gradient and stress concentration was identified by experiment and finite element analysis (FEA). The morphology of the crack was intergranular of initiation from bolt cap root surface, and quasi-cleavage of propagation. The hydrogen distribution indicated that the hydrogen concentration in the bolt was in gradient distribution, and the region farther away from the sea water contains less hydrogen content. This revealed that hydrogen entered the bolt top surface through sea water under cathodic protection, and diffused from top to cap. The hydrogen content of the cap where crack initiated was 7.0 ppm, which was much higher than that in bolt shaft with normal content of 1.1 ppm. Results of low tensile test together with fractographic observation showed that the brittleness of the bolt was enhanced by the effect of hydrogen. Stress distribution calculated by FEA analysis indicated that the maximal stress of the bolt was about 1016 MPa, located at cap root surface which was consistent with crack initiation sites. The stress drove hydrogen to accumulate at root surface until cracking occurred. In a sum, the failure was attributed to the hydrogen diffusion, local high stress, and the martensitic microstructure susceptible to hydrogen embrittlement. Remedial measures such as avoiding over protection potential, that increase tempering temperature were suggested. Methods to optimize stress distribution of the bolt were also suggested based on FEA calculation.  相似文献   

11.
Metallographic and fractographic studies of intercrystalline fracture in high-purity Al-6Zn-3Mg bicrystals in inert, liquid metal, and water environments are described. The effects of variations in grain-boundary microstructure on fracture and the effects of cathodically charging specimens with hydrogen prior to testing in inert environments were also investigated. Mechanisms of liquid-metal embrittlement, stress-corrosion cracking and pre-exposure embrittlement are discussed in the light of these results. The observations suggest that liquid-metal embrittlement and stress-corrosion cracking generally occur by a plastic-flow/microvoid-coalescence process that is more localized than that which occurs in inert environments. It is proposed that adsorbed liquid metal or hydrogen atoms weaken interatomic bonds at crack tips, thereby facilitating the nucleation of dislocations and promoting the coalescence of cracks with voids.  相似文献   

12.
The occurrence of cracks in structural components indicates a certain threat to their reliable operation, because these cracks can grow during operation and reach critical sizes, leading to fracture. The fracture resistance of a structural component is given by the fracture toughness of the material, determined on standardized specimens with a precycled fatigue crack, and the constraint. The fracture toughness itself depends also on the environment. There is enough evidence that in the conditions of the environment assisted cracking the fracture toughness can be significantly reduced by hydrogen mechanism. Our research results have confirmed this and have demonstrated a considerable reduction in the stress corrosion fracture toughness as compared to that related to fatigue cracks. This should be taken into account when assessing the integrity of structural components with stress corrosion cracks. This paper presents experimental results concerned with the stress corrosion fracture toughness of specimens from a DN150 gas line pipe made of low-C steel CSN 411353.  相似文献   

13.
A mechanistic aspect of the susceptibility to the delayed fracture is studied with an emphasis on the critical behaviour of the subsurface growth of Quasi-Cleavage (QC) and Inter-Granular (IG) cracks. The materials employed are 0.35%C plain carbon steel and boron added bolt steel which were quenched and tempered to have various levels of yield strength ranging from 500 to 1400 MPa. Fractographic analysis shows us that QC + IG cracking process can be an essential mode in the delayed fracture of steels. A low susceptibility to delayed fracture can be explained by the crack growth behavior when the crucial blunting occurs at the crack tip.  相似文献   

14.
In this paper, experimental results on stress corrosion cracking in austenitic stainless steels are described. Crack growth data in sodium chloride solution for AISI 304 steel obtained for different metallurgical conditions, acoustic emission data recorded during crack growth and fractographic observations have been discussed with a view to identifying the operating mechanism. Some of the experimental observations such as crack propagation occurring in discontinuous jumps of the order of a few microns, lowering of the threshold stress intensity andJ-integral values on sensitization and cold working, typical transgranular fractographic features, transition in mode of fracture from transgranular to intergranular in sensitized conditions and activation energies of the order of 50 to 65 kJ/mol can all be accounted by hydrogen embrittlement mechanism. Hydrogen generated at the crack tip by corrosion reaction diffuses ahead of the crack tip under hydrostatic stress and influences the deformation process at the crack tip and also leads to the brittle component of the crack advance in jumps.  相似文献   

15.
为了研究三维编织SiC/SiC复合材料损伤机制,开展了室温条件下的单调拉伸和三点弯曲试验。实验前,利用CT扫描手段,明确了三维编织SiC/SiC复合材料试样的编织组织形态。对拉伸和三点弯曲试样的微观分析表明:原生孔洞和微裂纹导致了材料在单调拉伸过程中形成局部应力集中,随着拉伸载荷的增大,基体的横向开裂和纤维束间纵向层间裂纹逐渐演化形成纤维内部裂纹,导致材料最终的脆性断裂失效;在三点弯载荷作用下,表现为剪切、拉压共生的多耦合破坏模式,拉应力一侧首先发生失效,随后在中性面处发生剪切破坏,紧接着失效迅速向上下两侧扩展,直至截面在整个厚度方向发生失效;断口与纤维束的走向相关性很大,裂纹基本上沿着纤维束之间的界面进行扩展,导致最终失效未发生在理论失效位置处。   相似文献   

16.
The present work aims to provide evidence of corrosion‐induced hydrogen embrittlement of the aircraft aluminium alloy 2024. An extensive experimental investigation involving metallographic and fractographic analyses as well as mechanical testing was performed. The corrosion exposure led to a moderate reduction in yield and ultimate tensile stress and a dramatic reduction in tensile ductility. Metallographic investigation of the specimens revealed a hydrogen‐rich embrittled zone just below the corrosion layer. Furthermore, fractographic analyses showed an intergranular fracture at the specimen surface followed by a zone of quasi‐cleavage fracture and further below an entirely ductile fracture. Mechanical removal of the corroded layers restored the yield and ultimate stress almost to their initial values but not the tensile ductility. The tensile ductility was restored to the level of the uncorroded material only after heat treatment at 495°C. Measurement of hydrogen evolution with temperature showed that by heating the corroded alloy at 495°C, the trapped hydrogen is released.  相似文献   

17.
李京军  闫珺  牛建刚 《工程力学》2022,39(9):133-140
为研究冻融后自密实轻骨料混凝土单轴压缩下的声发射(AE)特性,对未掺引气剂的自密实轻骨料混凝土试件进行0次、50次、100次快速冻融试验。结果表明:随着冻融次数增加,试件轴压应力-应变曲线趋于完整,峰值应力有明显降低;声发射峰值频率主要位于15 kHz~45 kHz,85 kHz~105 kHz,235 kHz~255 kHz和285 kHz~320 kHz这4个“优势频段”区间,对应于混凝土内部预存裂纹或孔隙压密,骨料/砂浆界面增强层的开裂,粗骨料断裂破坏以及砂浆的开裂。受冻后的试件在轴压作用经历拉伸裂缝与剪切裂缝之间的交替转化,最终形成主裂缝导致破坏。冻融作用以及应力水平变化对AE信号源分布有较大影响,随着应力水平的增加,AE信号源趋于活跃,且在试样断裂面有聚集趋势。  相似文献   

18.
Abstract— From fractographic observations of specimens that have failed due to rolling contact fatigue, it has been concluded that the first stage of damage is the formation of mode II fatigue cracks parallel to the contact surface due to the cyclic shear stress component of the contact stress. Although these initial subsurface cracks, in both metals and ceramics, are produced in a direction parallel to the cyclic shear stress, cracks eventually grow in a direction close to the plane of the maximum tensile stress if we apply a simple mode II loading to them. The difference between crack growth in simple mode II loading and crack growth due to rolling contact fatigue is, we suppose, whether or not there is a superimposed compressive stress. Based on this hypothesis, we developed an apparatus to obtain the intrinsic characteristics of mode II fatigue crack growth, and developed a simplified model of subsurface crack growth due to rolling contact fatigue.
Some results in terms of da/dN versus ΔKII relations have been obtained using this apparatus on specimens of steel and aluminum alloys. Fractographs of the mode II fatigue fracture surfaces of the various materials are also provided.  相似文献   

19.
Arrays of cracks, parallel to the original plate rolling direction, were produced in a X65 microalloyed steel by hydrogen embrittlement of pipeline sections containing a weldment. A region of the heat-affected zone of the weldment was shown to have a lower yield strength (soft zone) than the surrounding material and cracking was concentrated in this throughthickness zone to produce the effect known as stack cracking. In situ cathodic hydrogen charging of tensile specimens under load led to failure by linking the rolling-plane cracks with transverse cleavage cracks, which were often initiated at inclusions. All cracking was predominantly by cleavage and failure occurred in tension in short times by hydrogen embrittlement when the applied tensile stress was above about half the uncharged yield stress. The influence of microstructure, hydrogen pressure and tensile loading conditions on the location of stack cracks and the mode of fracture is discussed.  相似文献   

20.
Extensive cracking of the type known as stack cracking was demonstrated in a cathodically charged X65 microalloyed pipeline steel containing a weldment. It is shown that the formation and propagation of rolling-plane cracks, which constitute the primary stages of the stack cracking, is due to local concentration of hydrogen gas pressure and a lowering of the cohesive strength of a number of interfaces by hydrogen. The characteristic S-shape of individual cracks which occurred during the linking up of cracks was attributed to stress interactions at crack tips and cleavage cracking normal to the rolling plane. An explanation of hydrogen embrittlement fracture is given in terms of electronic state modifications of the steel, including charge polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号