首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《国际聚合物材料杂志》2012,61(3-4):223-234
Abstract

Chemithermomechanical pulp (CTMP) of aspen was used as a filler in high density (HDPE) and linear low density (LLDPE) polyethylenes. To improve the bonding between the fiber and polymer, different chemical treatments of the fiber a) treatment with different isocyanates b) coating with maleic anhydride was carried out. Composites with isocyanate treated wood fibers produced higher tensile strength compared to untreated fiber composites. But when compared to diisocyanate, the polyisocyanate treated fibers produced higher gain in strength. HDPE or LLDPE filled with maleic anhydride coated CTMP aspen fibers showed a slight decrease in strength with the increase in filler concentration. Tensile modulus generally increased with filler loading and was not much affected by fiber treatment.  相似文献   

2.
Experiments are conducted with alumina (Al2O3) deposition on a wide size range of hexagonal boron nitride (BN) platelet-like particles. Successful deposition of alumina films on these particles, with film thickness controllable at the Angstrom level, is observed based upon TEM imaging, ICP-AES, particle size distributions, and surface area analysis. While fluidizing, fine BN particles aggregate in the bed. The aggregates are the entities fluidizing, not the primary particles. However, individual particles are coated using Atomic Layer Deposition (ALD), not aggregates. Since ALD is a surface chemistry phenomenon, the films grow uniformly on every primary particle. BN particles are small platelets with different functional groups on the basal planes and edge planes. A small exposure to reagents [2.5×106 Langmuir (L) per reagent per cycle], will only coat the edge planes of uncoated BN particles. A larger dose of 1×108 L will coat the entire uncoated BN particle (edge and basal planes). After 10 ALD cycles of the 1×108 L dose, the exposures can be reduced to 1×106 L as the film is then growing on alumina and not BN. Peel strength data indicate that adhesion between the coated particles and a cured epoxy in a filled composite is ∼25% stronger than that of uncoated particles and the epoxy. The overall thermal conductivity drops ∼17% for an identical filler loading as expected due to the additional thermal resistance added by the film. However, the viscosity of an epoxy resin loaded with coated BN is as much as five times lower than that of the resin loaded with the same amount of uncoated BN. These results indicate that the loading of Al2O3 nanocoated BN particles in an epoxy matrix can be substantially increased relative to that of uncoated particles. The thermal conductivity of the more highly filled composite will be increased without adversely impacting filled resin viscosity or the peel strength of the cured material. This is the first reported study indicating that cohesive primary particles that fluidize as aggregates in a fluidized bed can be individually coated with a nano-thick ceramic film using ALD.  相似文献   

3.
《Ceramics International》2021,47(19):27395-27405
Ceramic shell moulds for investment casting of shrouded low-pressure turbine (LPT) blades were prepared by using colloidal silica binder and partial substitution of the zircon filler with fine alumina. Among the two ceramic slurry systems designed, the first slurry system comprised of polymer-free colloidal silica binder, and the second slurry system comprised of polymer-containing colloidal silica binder. The samples prepared from the first slurry system showed higher fired residual strength and self-load sag values (lesser sag resistance). The casting of shrouded LPT blades was carried out at 1525 °C and 1550 °C using CM247LC superalloy. Ceramic shell moulds prepared from the second slurry system, containing 30 wt% of fine alumina filler, yielded aeronautical grade casting (at 1550 °C) of blades with required dimensional accuracy and average surface roughness. Microstructural analysis of the cut surfaces of self-load sag tested samples was carried out to understand the effect of fine alumina substitution on shell characteristics.  相似文献   

4.
By taking advantage of the low sintering temperatures of the preceramic polymers, stereolithography printed mullite components derived from preceramic polymer precursor containing alumina particles can be sintered at low temperatures. However, due to their high specific surface, nano alumina particles are difficult to be dispersed into the photocurable polysiloxane. Herein, to prepare mullite slurry, a photosensitive hydroxysiloxane was employed as the preceramic polymer matrix while γ-Al2O3 nanoparticle was added as the active filler. The introduction of photocurable hydroxysiloxane not only improved the homogeneity and rheological properties of mullite slurry but also shorted the ionic diffusion distance of Si-ion and Al-ion during the sintering process. Therefore, 3D mullite preceramic precursor stereolithography printed from hydroxysiloxane-Al2O3 slurry was endowed with a low sintering temperature around 1400 °C. During the sintering process of preceramic precursor, sintering aid AlF3 can participate in the reaction and further promote the formulation of mullite grains.  相似文献   

5.
Functionally-graded ceramic composites were produced using a hot pour-and-set method via freeze casting of alumina slurries with solid loading between 40% and 20%, with gelatine as a binder. The slurry and additives were tailored for controlling the microstructure and mechanical properties, such as pore morphology, preform density and compressive strength. Varying the gelatine concentration between 2.5% and 9%, transformed the pore morphology from lamelllar to honeycomb and into closed cell. At 3% concentration, increasing the solid loading from 10% to 30% yielded higher compressive strength from 48 MPa to 317 MPa. The resultant compressive behaviour closely matched to Gibson-Ashby closed cell predictive model. Alumina/epoxy composite mechanical performance plateau as the solid loading increased; the 20% solid loading composite produced the best performance. The compressive strengths of the alumina/epoxy and alumina/aluminium composites were on average 300% and 1110% higher than their respective preform counterparts, across a solid loading range of 10–20%.  相似文献   

6.
Abstract

A novel method of tape casting to fabricate ceramic-particulate-reinforced composite filler alloy tapes with low organics (no more than 6?wt.%) was developed, with which SiCP/Ag–Cu–Ti hybrid tapes were successfully prepared and used in joining of sintered silicon carbide ceramics. The stress rheometer, scanning electron microscopy and energy dispersive spectrometer were used to characterize the rheological properties of slurry and microstructure of green tapes and joints. The slurry for tape casting consists of dispersant, binder, solvent, a mixture of ceramics particulates and metal powders, and no plasticizer was added. Castor oil phosphate was proven the suitable dispersant for the slurry, and the content of dispersant, binder, solid loading was optimized as 3?wt.%, 2.6?wt.% and 26?vol.%, respectively. The fabricated hybrid tapes possess good ductility and uniform thickness. The SiC particulates were homogeneously distributed in the metal powders matrix in both sides of the green tapes, and the distribution was retained in the SiC/SiC joints.  相似文献   

7.
Porous alumina ceramic was prepared by freeze casting method using tert-butyl alcohol as the solvent. The as?Cprepared porous alumina ceramic possessed long straight porous structure. The non-dendrite pore feature was quite distinguished from that prepared based on common solvents such as water and camphene. The porosity of the ceramic could be regulated through the solid loading. When the solid loading in the slurry was 20?vol%, the porosity of the alumina ceramic was 65%. With decreasing the solid loading, the porosity of the alumina ceramic increased linearly. The relationship between the total porosity (P) and initial solid loading (X) can be expressed as P?=?98.8?1.7X. The ultra-high porosity of 82% could be achieved when the solid loading was 10?vol%. Moreover, the density of the porous alumina ceramic with the porosity of 82% was even lower than water??s. The compressive strength of the porous alumina ceramic with the porosity of 63 and 82% was determined to be 37.0 and 2.6?MPa, respectively.  相似文献   

8.
《国际聚合物材料杂志》2012,61(3-4):241-254
Abstract

The paper reports on the curing characteristics and mechanical properties of oil palm wood flour (OPWF) reinforced epoxidized natural rubber (ENR) composites. Three sizes of OPWF at different filler loadings were compounded with a two roll mill. The cure (t 90) and scorch times of all filler size decrease with increasing OPWF loading. Increasing OPWF loading in ENR compound resulted in reduction of tensile strength and elongation at break but increased tensile modulus, tear strength and hardness. The composites filled with smaller OPWF size showed higher tensile strength, tensile modulus and tear strength. Scanning electron microscope (SEM) micrographs showed that at lower filler loading the fracture of composites occurred mainly due to the breakage of fibre with minimum pull-out of fibres from the matrix. However as the filler loading is increased, the fibre pull-out became very prominent due to the lack of adhesion between fibre and rubber matrix.  相似文献   

9.
Pd/Al2O3 monolithic catalyst of different washcoat thicknesses were prepared by two methods and tested for the activity of hydrogenation of α‐methyl styrene. These catalysts were prepared by two methods; either the palladium was impregnated on γ‐alumina and this Pd/Al2O3 powder was used to prepare the slurry for washcoating (Cat 1) or γ‐alumina washcoating was followed by impregnation of palladium (Cat 2). The effect of slurry concentration, pH of the slurry, and addition of binders on the catalyst properties was investigated. The monolithic catalysts were characterised by determination of metal dispersion, surface area, scanning electron microscopy, and weight loss of washcoat during ultrasonication. Well‐adhered washcoats were obtained with slurry prepared using milled γ‐alumina, whereas the adhesion of the washcoat prepared using Pd/Al2O3 powders was very poor. Addition of binders significantly improved the adhesion of the washcoats prepared from Pd/Al2O3. Metal dispersion for Cat 2 decreased with washcoat loading but did not change with loading for Cat 1. The activity tests were conducted at different washcoat loadings and the productivity of the monolithic catalyst prepared in both methods has been compared.  相似文献   

10.
《分离科学与技术》2012,47(18):3055-3069
ABSTRACT

This work investigates superabsorbent (SAB) polymer application to dewatering of fine pyrite (P) and chalcopyrite (CP) mineral slurries. The results showed that significant pulp water absorption, reflecting dramatic dewatering and hence, compact sediment consolidation (up to 80 wt%), may be achieved within 15 min of contact time. The rate of slurry water absorption increased with both decreasing SAB particle size and initial slurry solid loading. The SAB dewatering performance was higher for the CP than the P slurry. SAB regeneration and re-use investigations showed that multiple recycle and greater water recovery can be achieved with a given sample.  相似文献   

11.
A low-toxicity gel system based on the polymerization of low-toxicity 2-hydroxyethyl methacrylate (HEMA) was successfully developed. In order to obtain high solid loading ceramic slurry with low viscosities, a polyelectrolyte dispersant was selected. The results based on alumina suggested that the polyelectrolyte dispersant was more effective for the new HEMA system than tri-ammonium citrate (TAC), which was widely used for dispersing alumina powders. The green alumina bodies derived through the HEMA exhibited a mechanical strength as high as 18 MPa. SEM photos revealed that the green body also had a high homogeneity. Dense complex-shaped ceramic parts were produced through the new gelcasting system.  相似文献   

12.
The thermal conductivities of emulsion polymerized styrene-butadiene rubber (ESBR) vulcanizates filled with alumina (Al2O3), zinc oxide (ZnO), carbon nanotubes (CNTs), silicon carbide (SiC), are measured by steady-state method. The effects of types and loadings of the fillers and their mixture on thermal conductivities of the ESBR vulcanizates are investigated. The results show that the thermal conductivity of ESBR vulcanizates filled with alumina or zinc oxide, increases nearly linearly with increasing loading when the filler loading exceeded 20 phr; the ESBR vulcanizates filled with CNTs have the highest thermal conductivity at a given filler loading in comparison with other composite vulcanizates. At a given loading of 100 phr, the ESBR vulcanizate filled with two different particle sizes SiC of 1–3 and 5–11 μm at the mass ratio of 1:1 has the highest thermal conductivity and relatively good mechanical properties. The experimental results are analyzed using Geometric mean model and Agari’s equation to explain the effect of filler types and particle sizes on the formation of thermal conductive networks. The thermal conductivity of the ESBR vulcanizates filled with Al2O3 or ZnO or CNTs could be well predicted by optimized parameters using Agari’s equation for a polymer composite filled with mixtures of particles.  相似文献   

13.
Yttria is an important primary coat material in investment shells for casting extremely reactive TiAl alloys and polymer is usually added to slurry to improve strength of the shell. In this investigation, systems that vary the polymer content through 0%, 6% and 30% were produced and the samples were sintered at 1000 °C, 1200 °C and 1400 °C. The results suggest that polymer content and sintering temperature appear to have little effect on the hardened alpha layer of the cast alloy, which is elevated by near-surface oxygen content. Silica from the backing coat is seen to travel through the primary coat and diffuse into the alloy regardless of the shell system. Firing temperatures above 1200 °C increase the shell strength undesirably but the friability of the primary coat decreases as firing temperature increases. Higher mould permeability was found in the mould containing higher polymer level and this would be advantageous for complete mould filling.  相似文献   

14.
《应用陶瓷进展》2013,112(2):58-61
Abstract

The development of a cast forming process for ceramics based on agarose gelation is described and the properties of green and sintered bodies are presented. For this process, a warm alumina slurry containing more than 50 vol.-% solids loading and ~1 wt-% agarose binder (Al2O3 basis) is cast into a relatively cold, non-porous mould, resulting in a tough green body formed by gelation (37°C) of the agarose molecules. The green compacts show uniform density distribution, with precise dimensions and very smooth surfaces. After drying, they can be sintered directly without special binder burn out procedures. Complex ceramic parts with thick and thin cross-sections can be formed. The process is illustrated for the preparation of a turbine rotor component.  相似文献   

15.
以硅溶胶为黏结剂,采用浆液浸涂法对堇青石蜂窝陶瓷基体进行涂覆,制备整体式脱硝催化剂的TiO2涂层。考察固含量、pH和不同添加剂等对TiO2浆液及涂层性质的影响,结合超声振荡、比表面积、扫描电镜和X射线衍射等手段对TiO2涂层进行表征。结果表明,随着固含量的增加,浆液黏度的增加速率逐渐加快,固含量超过22.82%时,浆液发生团聚,不可进行涂覆;随着pH的增大,浆液黏度先降低后增加,在pH为1.05时,浆液黏度最低;浆液中加入适量的聚乙烯醇、六次甲基四胺和铝溶胶均可提高涂层负载量,降低涂层脱落率。其中,在浆液中添加质量分数5%的铝溶胶可以使涂层负载质量分数增至8.58%,比表面积达10.22 m2·g-1,而涂层脱落率仅为12.84%,该涂层可作脱硝催化剂的良好载体。  相似文献   

16.
Pressure filtration was used to form green compacts from aqueous slurries of alumina with 5 vol.% silicon carbide. Green densities of 64%TD were achieved for slurries containing a 50 vol.% solids loading. Lower green densities were obtained for a very fine alumina due to the practical limits on maximum slurry solids loading when using finer powders. The samples were dried in a purposely built humidity cabinet to limit sample cracking. It was found that a higher consolidated layer permeability gave a higher initial drying rate. Near fully dense (99% TD) nanocomposites were produced, via pressureless sintering at 1900 °C. Poor sintered densities were obtained in the case of the fine alumina because of localised sintering of these low green density compacts. The required intra/inter-granular nanocomposite microstructures have been obtained for several different systems, with an average grain size of approximately 5 μm. Abnormal grain growth was noted for samples containing the larger particle size silicon carbide. This shows that a maximum particle size limit exists when selecting the powders for a 5 vol.% nanocomposite.  相似文献   

17.
The present study demonstrates the use of soapnut, a naturally occurring surfactant for producing alumina ceramic foams. A range of slurry compositions with soapnut amounts ranging from 2 to 20 wt% in water, alumina loading of 35–55 vol% were studied. Though all slurry compositions foamed when subjected to mechanical agitation the formation of green ceramic foams free of macroscopic defects was found to be strongly dependent on conditions during drying of foamed slurries. Addition of guar gum to the slurries was shown to enhance foam stability and thus produce defect-free foams from compositions that otherwise either collapsed or resulted in other macroscopic defects during drying. Drying conditions also had a strong effect on microstructural parameters such as cell size and cell connectivity. Soapnut-based foams appear to have a greater connectivity between cells than foams produced by other comparable processes.  相似文献   

18.
Preparation of alumina by aqueous gelcasting   总被引:6,自引:0,他引:6  
The alumina ceramic was prepared by aqueous gelcasting. The effects of zeta potentials, solid loading, dispersant content and milling time on the alumina suspension were studied systematically. The dispersant content has remarkable effects on the viscosity of the suspension. The appropriate dispersant concentration for alumina aqueous slurry with the solid loading of 55 vol.% is 0.6 wt.%. It can be seen that all suspensions (50–56 vol.% solid loading) exhibited a shear-thinning behavior and relatively low viscosity, which was suitable for casting. The degree of shear thinning and the viscosity at high shear rates increased with increasing volume fraction of solid. As the milling time prolongs, viscosity of the suspension decreases first, then the plateau appears and the average diameter keeps changeless. When the milling time was shorter than 20 h, the viscosity of slurries decreased gradually as the time of milling increased. After 20 h milling, the viscosity of the slurry tended to be consistent. Therefore, the ball milling time should be equal to or more than 20 h to obtain a stable suspension at equilibrium. The time available for casting the slurry (idle time) can be controlled by the amounts of initiator and catalyst added to the slurry as well as by the processing temperature. Micrograph of the gelcast green body was homogeneous.  相似文献   

19.
《国际聚合物材料杂志》2012,61(3-4):275-289
Abstract

The fatigue behaviour of white rice husk ash (WRHA) filled ENR-50 compounds was compared with those of silica (Vulcasil-S) and carbon black (N 330) filled compounds. The effect of WRHA loading on scorch time and Mooney viscosity was also studied. The incorporation of WRHA in ENR-50 compounds reduced the scorch time but increased the Mooney viscosity. The increment in filler loadings has resulted in the reduction of the fatigue fife. The fatigue behaviour of ENR-50 vulcanizates was observed to be strain dependent. At a similar filler loading, silica filled vulcanizates showed the highest fatigue life followed by those of WRHA and carbon black.  相似文献   

20.
大比表面积高牢固度堇青石蜂窝涂层的制备   总被引:3,自引:0,他引:3  
以拟薄水铝石粉为原料,分别采用铝溶胶法、活性Al_2O_3浆料法和混合浆液法,对堇青石蜂窝基体进行涂层处理。通过黏度、SEM、BET和超声振荡等分析测试手段,着重考察了涂层浆液固含量和黏度对蜂窝涂层量、比表面积和牢固度的影响,比较了采用不同方法进行涂层的效果。结果表明,铝溶胶的涂层具有牢固度高的特点,缺点是比表面积小;Al_2O_3浆料的涂层比表面积较大,但牢固度较差。而混合浆液法利用铝溶胶作为Al_2O_3浆料的胶联剂,结合上述两种涂层方法的优势,涂层后的蜂窝既具备大的比表面积(达59m~2·g~(-1)),又保持了较高的涂层牢固度,而且涂层工艺简单可控,有利于工业化应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号