首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Satisfactory performance of rotary seal materials demands not only a relatively low hardness and high resistance to heat, but also good antifriction properties; the latter are required to ensure that the blade tips and rotary seal rings can readily cut into the inserts at high sliding speeds without seizing.The results of our study of the qualitative and quantitative characteristics of dry friction of cermet sealing materials in a wide sliding speed range (10–100 m/sec) showed that high temperatures attained by the surface layers of specimens tested at high sliding speeds lead to substantial changes in structure and properties of these materials, and that oxide films formed under these conditions prevent the onset of seizing. Graphite and boron nitride used as solid lubricants in the cermet sealing materials S-120 and UMB-4s act as protective antifriction additives. At sliding speeds higher than 70 m/sec, however, at which high temperatures are generated by friction, graphite burns out; as a result, both the friction coefficients and the rate of wear of material S-120 increase.Boron nitride is a more chemically stable solid lubricant; as a result, both the friction coefficient of material UMB-4s over the entire sliding speed range investigated and its rate of wear at high sliding speeds are lower than those of material S-120.  相似文献   

2.
Composite nanosheets of graphene and boron nitride have been produced in large quantities for the first time using high‐energy ball milling in ammonia gas as an exfoliation agent. The anti‐wear properties of the composite nanosheets as a lubricant additive are investigated via a four‐ball method. The results show that the composite nanosheets are exfoliated from the commercial graphite and h‐BN powders and combined into graphene/BN composite nanosheets during the ball milling process. The composite nanosheets formed have diameters larger than 200 nm and consist of heterostructures of approximately 10 monolayers of graphene and BN. The composite nanosheets exhibit better wear resistance and friction reduction properties than the homogeneous nanosheets because of the stronger interaction between graphene and BN nanosheets, which can effectively improve the anti‐wear properties of mineral base oil as a lubricant additive.
  相似文献   

3.
铜-石墨复合材料的摩擦学性能和磨损机理   总被引:2,自引:0,他引:2  
采用机械合金化后冷压成型和放电等离子烧结两种不同工艺分别制备铜-石墨复合材料,在销盘式实验机上进行材料的摩擦实验,并通过扫描电镜、X射线光电子能谱仪(XPS)分析摩擦表面的形貌和化学性质。结果表明:随着石墨含量的增加,复合材料的摩擦系数与磨损率显著下降;随烧结温度的升高,摩擦系数与磨损率都呈下降趋势。摩擦系数与磨损率的显著改善是由于在磨损过程中形成一层覆盖表面的润滑膜。当形成的润滑膜几乎覆盖住整个磨损表面时,该润滑膜能够抑制滑动界面处金属与金属接触,使摩擦磨损特性得以改善。  相似文献   

4.
The results of the investigations of thermophysical characteristics, thermomechanical and mechanical properties of epoxy-polysiloxane nanocomposites with different contents of modifying additives in the presence of fine-grained antifriction fillers. It is shown that the joint influence of the modifier (polysiloxane particles) and filler (graphite) on the formation of the composite structure during the hardening results in the essential improvement of its physico-mechanical properties. The optimal formulation of a composition to be used as an antifriction solid lubricant for a cold plastic deformation of titanium alloys is determined.  相似文献   

5.
付传起  王宙 《材料保护》2011,44(10):32-34,7
为了进一步提高材料的力学性能和摩擦学性能,以感应加热烧结的方法,制备了Fe-Cu-Al-石墨复合材料。利用XRD,EDS,SEM等分析了复合材料的组成、结构、表面形貌;研究了其力学性能、摩擦学性能及磨损机理。结果表明:Fe-Cu-A1-石墨复合材料具有多孔结构;随着石墨含量的增加,复合材料的力学性能降低,摩擦学性能提高...  相似文献   

6.
Polyetherimide (PEI), commercially known as ULTEM and manufactured by GEC (USA), is one of the newest high-performance thermoplastics. Its graphite and short-glass-fibre (GF) filled composition was evaluated for friction and wear properties. Tribological studies of the material sliding against mild steel, under different loads, counterface roughnesses and sliding distances were performed on a pin and disc configuration. It was observed that this composite displayed very good wear resistance due to glass-fibre reinforcement and low friction due to the solid lubricant graphite. The wear mechanism was studied with scanning electron microscopy by observing the worn pin and disc surfaces. Fatigue was observed to be the main factor in wear, along with adhesive and abrasive modes.  相似文献   

7.
以石墨、MoS2和含二氮杂萘联苯型聚醚砜酮(PPESK)为原料,用溶液共混共沉淀、热压模塑方法研制出PPESK基减摩复合材料,摩擦磨损实验结果表明摩擦系数与PTFE的相近,磨损率比纯树脂降低1个数量级。利用KYKY100B扫描电镜观察材料磨损表面,分析了材料的磨损机理。复合材料的摩擦磨损性能良好,且具有优异的耐热性能,是一类新型无油润滑的耐高温低摩擦材料。  相似文献   

8.
磷酸二氢铝粘结固体润滑膜性能研究   总被引:1,自引:0,他引:1  
无机粘结固体润滑膜与有机粘结膜相比耐高温性能优良。喷涂制备了磷酸二氢铝粘结石墨固体润滑膜,在M-2000磨损试验机上测试了涂膜在载荷100N干摩擦条件下的环块接触磨损性能并通过扫描电镜观察了磨损前后表面形貌。磨损试验表明,涂膜经过高温烘烤有利于脱除部分水分,组织更致密,其中纯石墨涂膜经过高温烘烤之后磨损量和磨损率均最低,在50min试验周期内磨损率为0.038mg/m(单位行程磨损量);在涂膜中适当添加无机颗粒有利于形成海岛结构增强体,阻止裂纹扩展。  相似文献   

9.
龚乾江  徐祥  杨明 《复合材料学报》2017,34(10):2171-2181
采用干法热压成型工艺制备高摩复合材料,研究了基体材料腰果壳油改性酚醛树脂(CPR)与丁晴橡胶(NR)的质量比和新型高性能填料(主要成分为石墨粉Al2O3、MoS2、Fe粉)含量对高摩复合材料摩擦磨损性能的影响规律。在摩擦磨损试验机上测试了高摩复合材料的摩擦磨损性能,利用激光共聚焦显微镜、扫描电镜对摩擦表面形貌、磨屑进行观察和分析,借助EDS测定摩擦表面成分的变化。结果表明,随着CPR与NR质量比的增加,高摩复合材料的耐热性能、结合性能大幅提高,且具有较好的摩擦磨损性能。当高性能填料含量较低时,磨损表面出现大量连续的真实接触面,磨损机制为磨粒磨损和黏着磨损;当高性能填料含量较高时,真实接触面积减少,磨损表面剥落严重,并出现较多的裂纹,其主要磨损形式转变为磨粒磨损和疲劳磨损。随着高性能填料含量的增加,摩擦表面的元素从均匀分布逐渐转变为局部富集,磨粒的尺寸逐渐变大。  相似文献   

10.
Sliding wear is a key determinant of the performance of electrical sliding contacts used in electrical machines. The behavior of the contact in sliding couple is controlled by the mutual metal transfer, friction and wear. Product life and reliability of sliding contacts are dictated by wear phenomenon. The present paper focuses on evaluation of tribological performance of copper–graphite composites using reliability theory. These composites are made up of a high electrical and thermal conductivity matrix with a solid lubricant reinforcement, making it most suitable for sliding contacts. Traditional life tests under normal operating condition would be a time consuming process due to a very long expected life of the composite. Hence, accelerated wear testing was carried out for evaluating the life characteristics. Analysis was then performed on the times-to-failure data and reliability models were developed. Life-stress relationship based on the inverse power law-Weibull model was used to make reliability predictions at normal usage level.  相似文献   

11.
A356 aluminum alloy reinforced with 7 wt.% microsilica composites was produced by the three different processing routes viz. liquid metal stir casting followed by gravity casting, compocasting followed by squeeze casting and modified compocasting route and their properties were examined. Microstructure of liquid metal stir cast Al MMC shows agglomeration of particles leading to high porosity level in the developed material. Adopting new route of compocasting followed by squeeze casting process prevents the agglomeration sites with uniform distribution and dispersion of the dispersoids in the matrix metal. Modified compocasting process reduces the segregation of particles in the final composites thus enhancing the mechanical, tribological and corrosion properties of the composites. Superior wear-resistance properties were exhibited by the modified compocast composite compared to the unreinforced squeeze cast alloy and abrasive type wear mechanism was observed in the case of composite. Increasing the sliding speed resulted in the quick evolution of tribolayer and the wear rate of composite gets reduced. The presence of intermetallic phases like MgAl2O4, NaAlSi3O8 and KAlSi3O8 has a favorable effect on increased corrosion resistance of the composite. Microsilica particles significantly enhanced the compressive strength of modified compocast composites compared to the unreinforced squeeze cast Al alloy.  相似文献   

12.
Abstract

The effects of volume fraction, particle size, and sintered porosity of FeCr (M7C3–M23C6) particulates on the abrasive wear resistance of powder metallurgy (PM) Fe alloy metal matrix composites have been studied under different abrasive conditions. It was seen that the abrasive wear rate of the composites increased with an increase in the FeCr volume fraction in tests performed with 80 grade SiC abrasive paper, but it decreased for tests conducted with 220 grade SiC abrasive paper. Furthermore, the wear rates decreased with an increase in FeCr size for composites containing the same amount of FeCr. Hence it is deduced that Fe alloy composites reinforced with larger size FeCr particles are more effective against abrasive wear than those reinforced with smaller ones. At the same time the results show that the beneficial effects of hard FeCr particulates on wear resistance far outweighed the detrimental effects of sintered porosity in the PM metal matrix composites. In addition, the fabrication of composites containing soft particles such as graphite or copper favours a reduction in the coefficient of friction, and increases the matrix hardness of the composite. For this reason graphite and copper were used in the matrix in different amounts to test their effect on the wear resistance. Increase in graphite and copper volume fraction allowed the formation of additional phases, which had high hardness and wear resistance. It was also found that the wear rate of the composites decreased considerably with graphite and copper addition.  相似文献   

13.
The incorporation of graphite particles into AA6016 aluminum alloy matrix to fabricate metal/ceramic composites is still a great challenge and various parameters should be considered. In this study, dense AA6016 aluminum alloy/(0-20 wt%) graphite composites have successfully been fabricated by powder metallurgy process. At first, the mixed aluminum and graphite powders were cold compacted at 200 MPa and then sintered at 500 ℃ for 1 h followed by hot extrusion at 450 ℃. The influence of ceramic phases(free graphite and in-situ formed carbides) on microstructure, physical and mechanical properties of the produced composites were finally investigated. The results show that the fabricated composites have a relative density of over 98%. SEM observations indicate that the graphite has a good dispersion in the alloy matrix even at high graphite content. Hardness of all the produced composites was higher than that of aluminum alloy matrix. No cracks were observed at strain less than 23% for all hot extruded materials.Compressive strength, reduction in height, ultimate tensile stress, fracture stress, yield stress, and fracture strain of all Al/graphite composites were determined by high precision second order equations. Both compressive and ultimate tensile strengths have been correlated to microstructure constituents with focusing on the in-situ formed ceramic phases, silicon carbide(SiC) and aluminum carbide(Al_4 C_3). The ductile fracture mode of the produced composites became less dominant with increasing free graphite content and in-situ formed carbides. Wear resistance of Al/graphite composites was increased with increasing graphite content. Aluminum/20 wt% graphite composite exhibited superior wear resistance over that of AA6016 aluminum alloy.  相似文献   

14.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE) reinforced with carbon fibre (CF) underwent an enhancement of heat and wear resistant with the addition of polyphenyl ester (POB) and graphite, respectively. The effect of graphite content on the tribological properties of the composites was studied. The wear surface was examined using scanning electron microscope (SEM). The results of the sliding wear tests showed that with graphite loading, wear resistance increased and the coefficient of friction was much more stable. In addition, graphite improved the tribological properties of the composite. Hardness, impact strengths and thermal stability of the composites were enhanced. With increased load, the wear rate of the ultra‐high‐molecular‐weight polyethylene+carbon fibre+polyphenyl ester+10 % graphite composite tended to increase, whereas the coefficient of friction decreased. The adherence and plastic deformation were dominant wear mechanisms for the ultra‐high‐molecular‐weight polyethylene+carbon fibre+polyphenyl ester+graphite composites. The formation of a thin and uniform transfer film was observed.  相似文献   

15.
氧化铝陶瓷摩擦材料制备的初步研究   总被引:5,自引:0,他引:5  
陈晓虎 《材料导报》2000,14(5):63-65
采用热压烧结工艺制备了氧化铝陶瓷为基体、添加固态润滑组元石墨或氮化硼的陶瓷基摩擦材料。通过摩擦磨损对比试验,借助SEM分析手段,研究了陶瓷摩擦材料性能以及摩擦磨损方式。  相似文献   

16.
采用真空热压烧结工艺,制备TiB_2/(W,Ti)C/Ag(TWA)双润滑机制耦合从低温到高温均具有润滑性能的陶瓷刀具材料。X射线衍射(XRD)分析表明烧结过程中各组分化学相容性较好,断口形貌扫描电子显微镜(SEM)照片显示润滑剂Ag不仅能有效填充晶粒间隙,还能增强晶粒间黏结强度。以TiB_2/(W,Ti)C(TW)作为对比进行摩擦磨损实验,结果表明:室温下磨损表面均出现轻微机械犁沟,随着温度升高,TWA磨损表面形成富含润滑剂Ag的润滑膜,能有效减少摩擦系数与磨损量,400℃时其磨损量仅为TW磨损量的一半,TW、TWA主要磨损机制分别为磨粒磨损和黏结磨损。TiB_2在700℃原位生成的反应膜能提高复合材料减磨与耐磨性能,TW、TWA磨损机制主要为轻微磨粒磨损和氧化磨损。  相似文献   

17.
Use of graphite (Gr) reinforcement in aluminium matrix composites has been reported to be beneficial in reducing wear due to its solid lubricant property, but it results in reduction of mechanical strength. Addition of silicon carbide (SiC), on the other hand, improves both strength and wear resistance of composites, but high amount of SiC makes machining difficult and composites become brittle. Thus, SiC can be advantageously used as a second reinforcement to overcome the problem of strength reduction of Gr reinforced composites, resulting in what is known as hybrid composites. Aluminium matrix composites reinforced with equal weight fraction of SiC and Gr particulates up to 10% are studied with regard to hardness improvement and modified dry sliding wear behaviour. Studies based on design of experiments techniques indicate that there is an increasing trend of wear in Al–SiC–Gr hybrid composites beyond % reinforcement of 7.5%. Hybrid composites exhibit better wear characteristics compared to Gr reinforced composites. Interaction between load and sliding distance is noticed in both the composites and this may be attributed to the presence of Gr particulates. Decrease of wear with increase of speed and increase of wear with increase of either load or sliding distance or both were noticed.  相似文献   

18.
In this experimental study, aluminium (Al)-based graphite (Gr) and silicon carbide (SiC) particle-reinforced, self-lubricating hybrid composite materials were manufactured by powder metallurgy. The tribological and mechanical properties of these composite materials were investigated under dry sliding conditions. The results of the tests revealed that the SiC-reinforced hybrid composites exhibited a lower wear loss compared to the unreinforced alloy and Al–Gr composites. It was found that with an increase in the SiC content, the wear resistance increased monotonically with hardness. The hybridisation of the two reinforcements also improved the wear resistance of the composites, especially under high sliding speeds. Additionally, the wear loss of the hybrid composites decreased with increasing applied load and sliding distance, and a low friction coefficient and low wear loss were achieved at high sliding speeds. The composite with 5 wt.% Gr and 20 wt.% SiC showed the greatest improvement in tribological performance. The wear mechanism was studied through worn surface and wear debris analysis as well as microscopic examination of the wear tracks. This study revealed that the addition of both a hard reinforcement (e.g., SiC) and soft reinforcement (e.g., graphite) significantly improves the wear resistance of aluminium composites. On the whole, these results indicate that the hybrid aluminium composites can be considered as an outstanding material where high strength and wear-resistant components are of major importance, predominantly in the aerospace and automotive engineering sectors.  相似文献   

19.
《Materials Letters》2005,59(29-30):3976-3981
Metakaolinite-based geopolymer composites containing 5%–30% (volume fraction) scalelike graphite, polytetrafluoroethylene (PTFE), and molybdenum disulfide (MoS2), respectively, were synthesized in the presence of a compound activator composed of aqueous NaOH and sodium silicate at room temperature. The tribological behaviors of the resulting composites sliding against AISI-1045 steel were investigated on an MM-200 friction and wear tester, and the bending strength and compressive strength of the composites were determined on a universal materials tester. Moreover, the worn surfaces of the composites were analyzed by means of scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), which was aimed to reveal the wear mechanisms of the composites. It was found that all the three kinds of the tested solid lubricants contributed to greatly decrease the friction and wear of the composites, and they were also able to remarkably reduce the fluctuation of the friction coefficient. This was attributed to the formation of a lubricating film containing higher content of the detached solid lubricant particulates and the oxidized product Fe2O3 of the counterpart steel wear debris. The metakaolinite-based geopolymer was dominated by severe adhesion wear, while its composites filled with the solid lubricant particulates were characteristic of mild adhesion, scuffing, and delamination.  相似文献   

20.
Aluminum surface composites have gained huge importance in material processing due to their noble tribological characteristics. The reinforcement of solid lubricant particles with hard ceramics further enriches the tribological characteristics of surface composites. In the current study, friction stir processing was chosen to synthesize hybrid surface composites of aluminum containing B4C and MoS2 particles with anticipated improved tribological behavior. B4C and MoS2 powder particles in 87.5: 12.5 ratio were reinforced into the AA6061 by hole and groove method. Microstructural observations indicated that reinforcement particles are well distributed in the matrix. The hardness and wear resistance of hybrid surface composites improved as compared to the base material, due to well distributed abrasive B4C and solid lubricant MoS2 particles in AA6061. The hybrid surface composites achieved ∼32 % increased average hardness as compared to the base material. Hole method revealed ∼13 % better wear resistance compared to the groove method for friction stir processed hybrid surface composite, attributing to an improved homogeneity of particle distribution shown by zigzag hole pattern. Moreover, friction stir processed AA6061 without reinforcement particles exhibited reduced hardness and wear resistance due to loss of strengthening precipitates during multi-pass friction stir processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号