首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

A computer model has been developed to predict the processing window (austempering window) for austempered ductile iron (ADI). The model is a modification of an existing model for the isothermal decomposition of austenite in bainitic steels. It was calibrated using experimental data from the literature. In order to validate the model, the processing window corresponding to a ductile iron of composition 3.41%C, 2.46%Si, 0.36%Mn, 0.18%Mo, and 0.25%Cu is predicted and compared to experimental data. Computer assisted image analysis was used to investigate the volume fraction of martensite at the lower boundary of the processing window. X-ray diffraction was used to calculate the normalised volume fraction of austenite at the upper boundary of the processing window. The results show that the model successfully predicts the processing window corresponding to the iron investigated in this study.  相似文献   

2.
Abstract

A model is developed for simultaneous prediction of the processing window and austemperability of austempered ductile iron (ADI). The processing window represents a frame of time and temperature in which ADI satisfies optimum mechanical properties defined by ASTM A897M:1990. Austemperability is the maximum section size of ductile iron that can be austempered without formation of pearlite during the austempering process. The outcome of the model presents the processing window and austemperability as a three dimensional diagram (processing - austemperability window). The processing window boundaries are estimated according to a model for prediction of the time for ausferritic reaction in ADI. The austemperability of ductile iron is predicted according to the estimated pearlite curve of the TTT diagram and a mathematical model that simulates conduction of heat in a solid cylinder. The heat transfer model is calibrated for a ductile iron of composition (wt-%) 3.63C, 2.4Si, 0.39Mn, 0.4Mo, 0.25Cu, 0.04Ni, 0.04Mg. The model for the processing - austemperability window is validated for a ductile iron of composition (wt-%) 3.41C, 2.46Si, 0.36Mn, 0.18Mo, 0.25Cu, 0.036Mg at 285, 380, and 400 ° C austempering temperatures. Results show that the material satisfies ASTM A897M:1990 standard for the chosen experimental points within the processing - austemperability window without formation of pearlite in the microstructure.  相似文献   

3.
Abstract

Austempering kinetic measurements and mechanical property measurements are presented for a compacted graphite iron of composition Fe-3.4C-3.5Si-0.25Mn-0.50Mo-0.50Ni (wt-%) austempered at 375°C after austenitising at 890 and 940°C. Analysis of the austempering kinetics shows that alloying elements have a similar effect on the processing window as in ductile irons. The mechanical properties show optimum values at austempering times within the processing window. However, the graphite morphology limits the mechanical property enhancement achieved by austempering. Nevertheless, it is possible to double the strength of the as cast compacted graphite iron without loss in ductility.  相似文献   

4.
Traditionally steels have enjoyed some kind of monopoly in earth movement applications like ripper tips and grader blades. Earth movement demands that the material possesses both wear resistance and toughness. Ironically, the limitation of steels is that it is difficult to get a good combination of these properties. Recent research efforts in earth movement have focused on austempered ductile iron (ADI) as an alternative material, which exhibits both these properties. ADI is obtained when ductile cast iron is accorded a special heat treatment known as austempering. Before the usage of ADI can flourish, there is a need to thoroughly understand its mechanical and tribological behaviour. This paper details the heat treatment of ductile iron to yield ADI and also examines its mechanical and abrasive wear properties. These properties are compared with those of a proprietary quenched and tempered (Q&T) steel used in applications requiring wear resistance. Typically, when a load of 0.25 N mm−2 is used, the relative abrasion resistance (RAR) of ADI austempered at 375 °C with an initial hardness of 315 Hv is 2.01, while that of a Q&T steel, of hardness 635 Hv is 2.02. The good wear resistance exhibited by ADI despite the low initial hardness can be attributed to the surface transformation of retained austenite to martensite during abrasion. This phenomenon has been positively confirmed by XRD.  相似文献   

5.
The fracture behavior of copper-alloyed austempered ductile iron (ADI) was studied using metallography and fractography of selected samples. Three different grades of ADI were developed by austenitization at 900 °C for 60 min, followed by austempering for 60 min at either 270, 330, or 380 °C. The variation in austempered microstructure was determined by scanning electron microscopy of metallographically prepared samples, and structural parameters such as volume fraction of austenite, carbon content, and bainitic needle width were determined from the X-ray diffraction of powdered samples. The effect of austempering temperature on these structural parameters and on hardness, 0.2% proof stress, ultimate tensile strength (UTS), percent elongation, and impact strength was also studied. The fracture behavior under tensile and impact loading was determined by examination of the fractured surfaces and transverse cross sections near the fracture surface. The hardness, 0.2% proof stress, and UTS decrease and the impact energy increases as the austempering temperature is increased, and the morphology of the bainitic structure changes from lower to upper.  相似文献   

6.
Abstract

Austempering kinetic measurements and mechanical property measurements are presented for a ductile iron of composition Fe–3·56C–2·77Si–0·25Mn–0·45Mo–0·43Cu–0·04Mg (wt-%) after austenitising at 870°C and austempering at 400, 375, 320, and 285°C. The austempering kinetic measurements show that increasing the Mo content of the iron, for example, to increase hardenability, does not delay the austempering reaction significantly and the processing window is open for all the austempering temperatures studied. The mechanical properties determined for austempering temperatures of 400 and 375°C show that the higher ductility grades of the austempered ductile iron standards can be satisfied as predicted by the open processing windows. The ductility of the 0·45%Mo austempered iron is reduced compared with that measured in 0·13%Mo and 0·25%Mo irons austempered under the same conditions. This is attributed to an increased amount and continuity of intercellular carbide as the Mo content increases.  相似文献   

7.
The volume fraction of high carbon austenite present in the microstructure of austempered ductile iron (ADI) is one of the important factors that influence the mechanical and physical properties of the alloy. Formation of martensite by TRIP (transformation induced plasticity) mechanism during the machining operation in which a large amount of stress is applied to the microstructure results in a decrease in machinability of austempered ductile iron which has affected the expansion of ADI in industry. In this article, the effect of depth of cut as a machining variable is assessed in an alloyed austempered ductile iron containing Cu, Ni and Mo. The measurements of mechanical properties including impact energy, tensile strength, hardness and microhardness along the cross-section of samples are reported for samples austenitized at 870 °C followed by austempering at 375, 340 and 300 °C. Results indicate that contrary to the behavior of many alloys, in austempered ductile iron, reducing the depth of cut will not improve the machinability. In the case of studied composition, cutting with depths of 0.5 and 0.1 mm had the best and worst results, respectively.  相似文献   

8.
The outstanding mechanical properties of austempered ductile irons (ADI) are linked to the microstructure of the matrix obtained by subjecting a ductile iron with an appropriate composition to a heat treatment called austempering. Then the microstructure of the matrix consists of bainitic ferrite with different volume fractions of retained austenite. The aim of this work is to use the magnetic Barkhausen noise (MBN) as a nondestructive method for characterizing the microstructure of ADI. First, it is shown that the amplitude and position of the peak-shaped MBN response is quite sensitive to the microstructure of the matrix of ductile irons. Thus each type of constituent (equiaxial ferrite, pearlite, martensite or bainite) exhibits a typical response and, in turn, it can be identified from the MBN response. Furthermore, a good correlation is found between MBN signal parameters and ADI heat treatment parameters, indicating that MBN is also quite sensitive to fine evolutions of the microstructure of ADI. MBN peak position is especially sensitive to the type of bainite, whereas peak amplitude is linked to the progress of the bainite reaction. Hence MBN measurements appear to be a powerful tool to assess some important microstructural features of ADI castings.  相似文献   

9.
Abstract

An unalloyed nodular cast iron has been used to investigate the development of microstructure on heat treating in the bainite temperature region. Specimens were austenitised at 900°C for 1·5 h, then austempered for 1, 2, or 3 h at 250,300, and 350°C, respectively, and examined by light, transmission electron, and scanning electron microscopy. Experimental results indicate a microstructure consisting of a stable, highly enriched, retained austenite with one of two lower bainitic ferrite morphologies. One of these morphologies is carbide free acicular ferrite for specimens austempered at 350°C for 1 h and the other is bainitic ferrite in which carbide is distributed within the ferrite produced by different heat treatment conditions. Austempering at 350°C for 2 h and at 300°C for 1 and 2 h resulted in the formation of transition carbides in bainitic ferrite platelets. The η carbide was formed at 350°C for 2 h by precipitation from a bainitic ferrite supersaturated with carbon. By contrast, ? carbide was associated with austempering at 300°C for 1 and 2 h and precipitates either on the austenite twin/bainitic ferrite boundaries or within the bainitic ferrite. The fracture mode of tensile and impact specimens in the austempered condition was fully ductile compared with as cast specimens, which had mixed fracture characteristics.

MST/1646  相似文献   

10.
Abstract

The present work shows a steel structure with bainitic ferrite dispersed on a matrix of carbon enriched retained austenite. The steel was produced using an air melting technique, and it was austempered at 200°C for 240 h. The steel presents tensile strength of ~2 GPa. The authors report the new results of resistance to high cycle rotating fatigue in high strength bending life limit 107 cycles. A fatigue strength of 593 MPa was obtained, a result that is higher than that presented by important engineering materials such as forged steel and austempered ductile iron, even with the presence of fracture type ‘fish eye’, which nucleates mainly on shrinkage defects.  相似文献   

11.
In this study, ductile irons with and without 1 wt% copper alloy were austempered to become austempered ductile irons (ADIs). Microstructure, impact toughness, and fracture toughness were evaluated to determine how both the copper alloying and austempering treatments influenced the toughness properties of ductile irons. The results show that, because copper increases the retained austenite content in ADI, the Cu-alloyed ADI has better impact toughness and fracture toughness (KIC value) than does the unalloyed one. In particular, the impact toughness and the fracture toughness of ADI could be efficiently improved by treating the Cu-alloyed ductile iron at a higher austempering temperature (360 °C) to obtain more retained austenite in its microstructure.  相似文献   

12.
This investigation involves a systematic study of the fracture surfaces of two grades of austempered ductile iron (ADI) broken under quasi‐static, dynamic and cyclic loading conditions. The study used electron microscopy, optical microscopy and image post‐processing. The results show that the predominating fracture mechanism in ADI upon impact loading changes from quasi‐cleavage to ductile (with little areas of cleavage facets) as the testing temperature increases. Noticeably, even at the lower temperatures tested, the fracture surface of ADI shows clear signs of ductile fracture mechanisms. In particular, graphite nodule cavities suffer marked plastic deformation. Fracture after bending tests at room temperature was characterized by a mix of quasi‐cleavage facets, deformation of the contour of nodular cavities and microvoid coalescence. In the case of fatigue fracture at room temperature, the fracture surfaces show a flat appearance which has notorious differences with those reported for other loading conditions, but the typical fatigue striations were not found. The particular features identified on the fatigue fracture surfaces can be used to identify fatigue failures. It was also shown that the determination of the direction of main crack propagation by using the experimental methodology proposed earlier by the authors is applicable to ADI fractured by impact and quasi‐static loads. The results provide information potentially useful to fractographic analyses of ADI, particularly in samples that fail in service under unknown conditions.  相似文献   

13.
Abstract

The present article investigates the stability of the retained austenite, present in austempered ductile iron (ADI) after cooling at sub-zero temperatures, considering that the austenite could transform into martensite when austempered parts are exposed to low temperatures or stresses or strains. Optical microscopy with oblique illumination, X-ray diffraction techniques and microhardness tests were used to analyse the transformation of the austenite on samples with different austempering thermal cycles. The results indicated that the martensitic transformation took place mainly at the unreacted austenite present at the last to freeze areas of samples austenitised and austempered at the highest temperatures. On the other hand, the reacted austenite, present in the bulk of all the investigated samples, remains unchanged after cooling. Tensile tests were performed in order to evaluate the influence of the martensitic transformation, promoted by the sub-zero cooling, on strength and ductility.  相似文献   

14.
Abstract

Austempered ductile iron is known for its excellent mechanical properties resulting from special phase composition and austempering heat treatment. Typical microstructure consists of ferrite plates of micrometre size submerged in untransformed austenite matrix. It has been recently shown that by use of appropriate chemical composition of cast iron and well targeted heat treatment parameters, it is possible to reduce ferrite plates width to submicron or even nanometric size. This creates the potential to achieve even higher mechanical properties of austempered ductile iron. The paper describes the influence of applied heat treatment parameters on microstructure of selected austempered ductile iron grades. Conditions necessary to reduce size of phases to a nanometric scale by heat treatment in austempered ductile iron are discussed.  相似文献   

15.
Abstract

A multiple low alloyed ductile iron with 0.8 wt-%Ni and 0.25 wt-%Mo was austempered in single and two step processes at 300 and 400°C for 120 min. Specimens were used to study the effect of austempering conditions on the wear behaviour of this material. Sliding wear tests were carried out using a pin on disc apparatus, the tes tmaterials rubbing under dry atmospheric conditions against a surface of hardened steel (55 HRC) at speeds of 0.6, 0.7 and 1.0 m s-1 and normal loads of 15.82 and 22.84 N. Test durations were 30, 60, 90 and 120 min. Scanning electron microscopy was used to examine the worn surfaces of test specimens. It was found that two step austempered specimens exhibited wear resistance that was higher than that of specimens austempered at 400°C, and almost as high as that of specimens austempered at 300°C. These two step austempered specimens, moreover, gave the highest impact energy and showed the best combination of mechanical properties. During two step austempering, the first stage reaction (formation of ausferrite) was completed in the intercellular area before the undesired second stage reaction (precipitation of carbides) had started in the eutectic cells. The two step treatment resulted in a duplex structure: upper and lower bainitic ferrite without formation of carbides. This structure was responsible for the improvement of mechanical properties and the good wear resistance. The results show that a well balanced choice of smaller additions of multiple alloying elements can reduce the negative effects of segregation and resulting structural inhomogeneity. MST/5472  相似文献   

16.
An understanding of the kinetics of transformation during austenitization, cooling, and austempering of ductile iron is critical to achieving the desired microstructures and ultimately mechanical properties in austempered ductile iron (ADI). To this end, dilatometry experiments have been carried out to study the austenitization and cooling behavior of an unalloyed ductile iron. When a typical austenitization temperature of 900°C is used, unlike in steels, there is an initial expansion of the specimen, which levels off as the soaking time is increased. This occurs despite the fact that the temperature remains constant. This phenomenon, hitherto unreported, highlights the subtle differences between the austenitization of ductile irons and steels. The initial expansion is attributed to the increase in austenite lattice parameter, arising from the diffusion of carbon from the graphite nodules. The levelling off signals the saturation of austenite with carbon and can therefore be used as an indicator of the appropriate austenitization time. Studies of the cooling behavior of unalloyed ductile iron have also shown that the dilatometer can be used as a tool for determining the minimum cooling rates, which guarantee the formation of ausferrite during austempering. When ductile iron is appropriately heat-treated based on results from dilatometry studies, the mechanical properties obtained are typically superior and consistent.  相似文献   

17.
A commercial ductile iron is treated by a novel austempering process to obtain a good combination of strength and ductility. The samples are austenitised at 890°C for 10 min, then quenched into patented quenching liquid, and austempered in an electric furnace at 220°C for 5, 10, 30, 60, 240 and 600 min, respectively, finally air cooled. The bending test and the tensile test are conducted and microstructural features are analysed on the austempered ductile iron. The optimum mechanical property is achieved at 220°C for 240 min. Main reason for high strength and ductility is the formation of a fine structure consisting of multiple phases of pre-formed martensite and lath bainitic ferrite with film retained austenite.  相似文献   

18.
Abstract

X-ray diffraction, optical microscopy, and hardness measurements were used to determine the austenitising kinetics of an alloyed ductile iron containing 0·67%Mn, 0·25%Mo, and 0·25%Cu, during austempering at 285 and 375°C after austenitising at 870, 900, and 920°C. The austenitising kinetics show that 120 min is sufficient time to produce afully austenitic matrix. The stage I reaction during austempering occurs in two distinct steps: first in the eutectic cell and then in the intercellular areas. Decreasing the austenitising temperature is shown to increase the driving force for the stage I reaction but to have only a small effect on the stage II kinetics. Decreasing the austenitising temperature results in a more uniform austempered microstructure and reduces the amount of martensite in the structure. These changes shift the heat treatment processing window for high Mn irons to shorter timesfor austempering at 285°C and come close to, but do not open the processing window at 375°C.

MST/3117  相似文献   

19.
Austempered ductile iron (ADI) suffers an embrittlement phenomenon when loaded in contact with water and other liquids. This phenomenon causes noticeable drops in elongation, ultimate tensile strength and fracture toughness of ADI of different strength grades. This paper studies the susceptibility to embrittlement of a new kind of austempered ductile iron called dual phase ADI (DPADI), which shows a matrix composed by the typical ausferrite present in ADI mixed with allotriomorphic ferrite. The new material is obtained by means of specific heat treatments that involve a partial austenitising stage. The susceptibility of DPADI to this type of embrittlement was evaluated by carrying out tensile tests in dry and wet conditions. Fracture surfaces were observed using scanning electron microscopy. The results showed a gradual decrease of the degree of embrittlement caused by contact with water as the ferrite content in the matrix increases.  相似文献   

20.
The Dual Boundary Element Method (DBEM) is used in this work to model the micro mechanics of fatigue crack propagation in austempered ductile iron (ADI). Emphasis is put in devising accurate procedures for the evaluation of the interaction effects between very close crack–microcrack arrays. Fracture parameters are computed via the so-called one-point displacement formula using special crack-tip elements. Crack propagation is modelled using an incremental crack extension analysis; with crack extensions calculated using a propagation law that accounts for the near-threshold regime. Obtained results are in agreement with experimental observations, providing evidence to fracture mechanics models proposed in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号