首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

High temperature creep and creep–fatigue crack growth tests were carried out on standard compact specimens machined from ASME P92 steel pipe. The effects of various loading conditions on crack growth behaviours were investigated. Crack initiation time was found to decrease with the increasing initial stress intensity factor under creep condition and further to decrease by the introduction of fatigue condition. For creep test, the crack growth rate can be well characterised by the facture mechanics parameter C*. For creep–fatigue test, the crack growth behaviour is dominated by the cycle dependent fatigue process when the hold time is shorter, but it becomes dominated by the time dependent creep process when the hold time becomes longer.  相似文献   

2.
To minimize the deviation of the predicted creep curves obtained under constant load conditions by the original θ projection model, a new modified version that can be expressed by ε=θ11-e-θ2t+θ3eθ4eθ5εt-1, was derived and experimentally validated in our last study. In the present study, the predictive capability of the modified θ projection model was investigated by comparing the simulated and experimentally determined creep curves of K465 and DZ125 superalloys over a range of temperatures and stresses. Furthermore, the linear relationship between creep temperature and initial stress was extended to the 5-parameter model. The results indicated that the modified model could be used as a creep life prediction method, as it described the creep curve shape and resulted in predictions that fall within a specified error interval. Meanwhile, this modified model provides a more accurate way of describing creep curves under constant load conditions. The limitations and future direction of the modified model were also discussed. In addition, this modified θ projection model shows great potential for the evaluation and assessment of the service safety of structural materials used in components governed by creep deformation.  相似文献   

3.
Abstract

The influence of P on the creep behaviour of Ni, Ni–20Cr (wt-%), and Nimonic 80A was investigated by carrying out creep tests under various loads and at different temperatures. After creep fracture the samples were investigated using optical, scanning electron, and transmission electron microscopy. The grain boundary segregation was examined using Auger electron spectroscopy (AES). It was found that P segregates to the grain boundaries in all the materials investigated. The creep rate of Ni–20Cr and Nimonic 80A is decreased by the addition of P. Grain boundary segregation of P and its influence on strength was also investigated using AES for specimens aged between 600 and 700°C after fracture by a tensile test inside an ultrahigh vacuum chamber. Maxima of tensile strength are observed to be time dependent as a result of carbide precipitation, which is affected by the P segregation.

MST/1679  相似文献   

4.
The article contains an analysis of the theory of creep which in the literature is called the -concept, and its shortcomings are noted. The article suggests a modified variant of the theory and formulates a criterion of the creep limit from the positions of the theory of reliability. The obtained equations and criteria are compared with the results of creep and rupture tests of a heat-resistant alloy. These relations are fairly simple and can be used for engineering calculations of creep and creep limit.Leningrad University. TsNIIKM Prometei, Leningrad. Translated from Problemy Prochnosti, No. 12, pp. 8–11, December, 1989.  相似文献   

5.
Abstract

Evaluation of creep–fatigue failure is essential in design and fitness evaluation of high-temperature components in power generation plants. Cyclic deformation may alter the creep properties of the material and taking cyclic effects into account may improve the accuracy of creep–fatigue failure life prediction. To evaluate such a possibility, creep tests were conducted on 316FR and modified 9Cr–1Mo steel specimens subjected to prior cyclic loading; their creep deformation and rupture behaviours were compared with those of as-received materials. It was found that creep rupture life and elongation generally decreased following cyclic loading in both materials. In particular, the rupture elongation of 316FR in long-term creep conditions drastically decreases as a result of being cyclically deformed at a large strain range. Use of creep rupture properties after cyclic deformation, instead of those of as-received material, in strain-based and energy-based life estimation approaches brought about a clear improvement of creep–fatigue life prediction.  相似文献   

6.
Abstract

The compressive creep behaviour of as cast Mg–14Li–1·3Al (wt-%) alloy was investigated in the temperature range of 20?85°C and under different compressive stress in the range of 37·3–74·6 MPa with special apparatus. Primary creep deformation and steady creep rate increase with temperature and applied stress. The compressive creep behaviour obeys an empirical equation ln t=C?nln σ + Q/RT, where t is the time to a selected creep strain, σ is the applied stress, T is the absolute temperature, R is the gas constant, and C, n, and Q are constants for the experimental alloy. The average values of the exponent n and the creep activation energy Q are 4·33 and 101·13 kJ mol?1 respectively. The creep rate controlling mechanism is the dislocation climb and the lattice diffusion of Li in the experimental alloy under the testing conditions.  相似文献   

7.
Creep behavior of the lead-free Sn–Bi alloys with bismuth contents in the range of 1–5 wt.% was studied by long time Vickers indentation testing at room temperature. The materials were examined in the homogenized cast and wrought conditions. The stress exponents, determined through different indentation methods, were in good agreement. The exponents of 13.4–15.3 and 9.2–10.0, found respectively for the cast and wrought conditions, are close to those determined by room-temperature conventional creep testing of the same material reported in the literature. Due to the solid solution hardening effects of Bi in Sn, creep rate decreased and creep resistance increased with increasing Bi content of the materials. Cast alloys, with a rather coarser grain structure and some Bi particles at the grain boundaries, showed typically higher resistance to indentation creep compared to the wrought materials. These two factors have apparently resulted in a less tendency of the material for grain boundary accommodated deformation, which is considered as a process to decrease the creep resistance of soft materials.  相似文献   

8.
9.
In vitro creep studies of polyethylene, both unfilled and filled with hydroxyapatite at 0.20 and 0.40 volume fraction, have been performed. The samples were immersed in Ringer's solution at 37 degrees C for 1, 7, 30, 90 and 150 days prior to isochronous and creep tests in the same condition. The creep properties of unfilled polyethylene is unaffected by the immersion, but the isochronous modulus and the creep resistance of filled polyethylene were reduced. The effect increased with increasing volume fraction and time of immersion. This reduction is related to the penetration of the solution into the material, softening the interface.  相似文献   

10.
11.
The purpose of this paper is to compute the relaxation and creep functions from the data of shear complex modulus, G (iν). The experimental data are available in the frequency window ν∈[νmin max ] in terms of the storage G′(ν) and loss G″(ν) moduli. The loss factor h( n) = \fracG"( n)G¢(n)\eta( \nu) = \frac{G'( \nu )}{G'(\nu )} is asymmetrical function. Therefore, a five-parameter fractional derivative model is used to predict the complex shear modulus, G (iν). The corresponding relaxation spectrum is evaluated numerically because the analytical solution does not exist. Thereby, the fractional model is approximated by a generalized Maxwell model and its rheological parameters (G k ,τ k ,N) are determined leading to the discrete relaxation spectrum G(t) valid in time interval corresponding to the frequency window of the input experimental data. Based on the deterministic approach, the creep compliance J(t) is computed on inversing the relaxation function G(t).  相似文献   

12.
13.
The effect of tungsten–molybdenum (W–Mo) balance on creep life has been investigated for five heats of martensitic 9Cr steel with 1.5 % Mo equivalent (= 1/2W + Mo) at 600, 650 and 700°C. The combination of W and Mo concentrations in the present steel is 3W–0Mo, 2.8W–0.1Mo, 2.4W–0.3Mo, 1.8W–0.6Mo and 0W–1.5Mo. The time to rupture tr exhibits a monotonous increase with increasing the W–Mo balance parameter 1/2W/(1/2W + Mo), namely, with increasing W concentration and concomitantly with decreasing Mo. The increase in tr with increasing 1/2W/(1/2W + Mo) becomes less significant at long times. The precipitation of Fe2(W,Mo) Laves phase takes place preferentially at prior austenite grain boundaries during creep, which enhances the grain boundary (GB) precipitation hardening. The amount of Laves phase increases with increasing 1/2W/(1/2W + Mo). The coarsening of Laves phase takes place at long times during creep, which reduces the GB precipitation hardening.  相似文献   

14.
15.
《Scripta Metallurgica》1989,23(8):1319-1321
It is concluded from above that effect of σ-phase on creep properties depends on particle size and distribution. Fine σ-phase particles dispersively precipitated along grain boundaries and within grains increase creep resistance and rupture strength, having general characteristics of dispersion hardening.  相似文献   

16.
Time–temperature–stress superposition principle (TTSSP) was widely applied in studies of viscoelastic properties of materials. It involves shifting curves at various conditions to construct master curves. To extend the application of this principle, a temperature–stress hybrid shift factor and a modified Williams–Landel–Ferry (WLF) equation that incorporated variables of stress and temperature for the shift factor fitting were studied. A wood–plastic composite (WPC) was selected as the test subject to conduct a series of short-term creep tests. The results indicate that the WPC were rheologically simple materials and merely a horizontal shift was needed for the time–temperature superposition, whereas vertical shifting would be needed for time–stress superposition. The shift factor was independent of the stress for horizontal shifts in time–temperature superposition. In addition, the temperature- and stress-shift factors used to construct master curves were well fitted with the WLF equation. Furthermore, the parameters of the modified WLF equation were also successfully calibrated. The application of this method and equation can be extended to curve shifting that involves the effects of both temperature and stress simultaneously.  相似文献   

17.
Creep at 700 °C/196 MPa and 900 or 925 °C/27.4 MPa of 21Cr–4Ni–9Mn austenitic stainless steel is determined as a function of the heat treatment. The heat treatment variation involves altering the solution heat treatment cooling rate from water quenching to cooling at 6 or 4 °C/min causing: serrated grain boundaries versus planar grain boundaries, coarser intergranular carbides, and discontinuous precipitation of grain boundary reaction zones. Water quenching causes improved creep resistance. Creep fracture and cracking is intergranular. Coarse intergranular carbides and grain boundary reaction zones cause premature void formation and cracking, this damage leading to an accelerating creep rate and lowering creep resistance of the more slowly cooled conditions. During creep, grain boundary serrations, which may otherwise contribute to improved creep, are eliminated. Determining the individual influence of grain boundary serrations on creep requires a detailed investigation of various heat treatment parameters to prevent concurrent formation of grain boundary reaction zones and serrations.  相似文献   

18.
19.
20.
TEM studies of Al2O3--AION composites show the presence of precipitates in the -AION phase, due to a partial decomposition of this metastable phase formed during heat treatment. Thermal treatment (1650°C) has no effect on the microstructure, while compressive creep deformation (1650°C, 10–30 MPa) leads to a decrease of the -AION content. This phase decomposes, probably into alumina or alumina-poor AION. The precipitation process can be activated by the presence of dislocations, and is associated with a slight increase in strain rate during creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号