首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
《钢铁冶炼》2013,40(5):364-370
Abstract

The thermal behaviour of the continuous casting mould has a critical influence on strand surface quality, casting productivity and operating safety. voestalpine Stahl GmbH has long been interested in the field of research into mould behaviour, and began with the investigation of heat flux in 1995, and then of thermal variability in 1999. Since 2000, an online mould thermal monitoring system for heat flux density, thermal variability and friction has been installed. The heat flow density in the mould is determined by measuring the inflow and outflow temperatures and the throughflow volume of the primary cooling water. Temperature as measured by a thermocouple based breakout detection system in the mould copper plate is used to investigate the thermal variability. These online measured values have been employed to examine the influence of casting parameters, steel analysis and casting powder on the heat flux and thermal variability, and the relationship between these variables and cracking. The knowledge gained through these wide ranging plant based investigations has been used as a major tool in the diagnosis of problems (such as breakout and sticking), for optimisation of the process, particularly in the field of casting powders, and for control of slab quality. In particular, this knowledge has been incorporated into online mould thermal monitoring.  相似文献   

2.
《钢铁冶炼》2013,40(4):283-287
Abstract

The tools and techniques used within Corus UK to improve mould powder performance and product quality are reviewed. Mould thermal monitoring, which allows real time assessment of heat transfer, is a critical tool in the development of mould powders. Thermal analysis, viscosity measurements, flux–mould plate interactions, steel velocity profiles in the mould and slag film properties also play a part in continuing studies. Case studies of improvements in process performance achieved using these methods are presented.  相似文献   

3.
《钢铁冶炼》2013,40(1):76-82
Abstract

In high speed continuous casting, optimisation of mould taper is key for intensifying heat transfer and for improving the quality of the cast products. Mathematical modelling has been carried out by combining heat transfer, steel shrinkage and parabolic continuous taper model in order to optimise the mould taper profile. These models have been assembled to a set of software, the inputs of which include the steel grade, casting speed, casting temperature, length and the cross-section of mould tube, while the outputs consist of surface temperature of the strand, thickness of solidified shell, thermal linear expansion coefficient, steel shrinkage, distortion of the mould tube wall, the actual air gap, total taper and the continuous taper profile. Optimum mould taper has a parabolic profile which is tapered inwards that changes continuously along the length of the strand in order to achieve reduction in air gap while avoiding distortion of the mould tube.  相似文献   

4.
《钢铁冶炼》2013,40(5):380-386
Abstract

Two-dimensional finite element heat transfer models have been developed to predict temperature distribution in beam blank moulds with large and small hole water cooling channels. The effects of water channel design and grinding thickness on transverse temperature profile in meniscus region were analysed in detail. The effects of both moulds during plant trials are also compared. The results show that the peak temperature is found in the fillet area of the large hole mould and is 20°C higher than that of the small hole mould. With increasing grinding thickness, peak temperature in both moulds decreases linearly, and when the grinding thickness reaches 9 mm, the peak temperature of the small hole mould exceeds that of the large hole mould. The transverse temperature uniformity of the hole mould is superior to that of the large hole mould. It is also found that longer mould life, better strand surface quality and more homogeneous surface microstructure are obtained when using the small hole mould.  相似文献   

5.
《钢铁冶炼》2013,40(7):546-551
Abstract

A mathematical model based on an inverse heat transfer calculation was built to determine the heat flux between the mould and slab based on the measured mould temperatures. With K? turbulence model, a mathematical model of three-dimensional heat transfer and solidification of molten steel in continuous slab casting mould is developed. Solidification has been taken into consideration, and flow in the mushy zone is modelled according to Darcy’s law as is the case of flow in the porous media. The heat flux prescribed on the boundaries is obtained in the inverse heat conduction calculation; thus, the effect of heat transfer in the mould has been taken into consideration. Results show that the calculated values of mould temperature coincide with the measured ones. Results also reveal that the temperature distribution and shell thickness are affected by the fluid flow and heat transfer of slab which is governed by the heat flux on the mould/slab interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号