首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用臭氧活性炭工艺对印染废水进行处理,通过调节活性炭投加量、pH、搅拌速度、臭氧氧化时间、臭氧浓度对印染废水的色度、COD_(Cr)、氨氮的去除率进行分析,确定了臭氧活性炭工艺的最佳工艺条件。结果表明,在pH值为9、搅拌速度为120 r/min、活性炭投加量为110 mg/L、臭氧浓度为20 mg/L和氧化时间为8 min的条件下,印染废水有较好的处理效果,色度、COD_(Cr)和氨氮的去除率分别为92%、69%和62%。可见,臭氧活性炭工艺能有效处理印染废水,达到水质净化的效果。  相似文献   

2.
针对生化后炼油废水CODCr无法达标的问题,使用负载Mn-Fe氧化物活性相的陶粒催化剂。采用臭氧催化氧化工艺处理炼油生化尾水。研究中考察了pH、温度、催化剂投加量和臭氧用量等工艺条件对生化尾水中CODCr处理效果的影响。结果表明,当废水初始pH=7,臭氧用量为6.3 mg/min,催化剂投加量为8 g/L时,催化氧化效果最优。室温(22℃)下反应30 min后,出水CODCr浓度为48 mg/L,满足了炼油企业排放标准。所制备的催化剂使用后活性稳定,多次使用后活性无明显降低。  相似文献   

3.
《应用化工》2022,(4):750-753
针对生化后炼油废水CODCr无法达标的问题,使用负载Mn-Fe氧化物活性相的陶粒催化剂。采用臭氧催化氧化工艺处理炼油生化尾水。研究中考察了pH、温度、催化剂投加量和臭氧用量等工艺条件对生化尾水中CODCr处理效果的影响。结果表明,当废水初始pH=7,臭氧用量为6.3 mg/min,催化剂投加量为8 g/L时,催化氧化效果最优。室温(22℃)下反应30 min后,出水CODCr浓度为48 mg/L,满足了炼油企业排放标准。所制备的催化剂使用后活性稳定,多次使用后活性无明显降低。  相似文献   

4.
《广东化工》2021,48(13)
以老龄垃圾渗滤液生化段后混凝出水为对象,考察了臭氧投加量、反应时间、铜基臭氧催化剂用量对COD_(Cr)去除总量和去除率的影响,并通过重复使用试验考察了催化剂的稳定性。结果表明,最佳反应条件为:臭氧投加量为90 mg/L,反应时间为90 min,催化剂投加量为10.0 g/L;该条件下,COD_(Cr)平均去除量为98.3 mg/L,COD_(Cr)的平均去除率为43.40%,相对于单独臭氧COD_(Cr)的平均去除率提高了104.23%,臭氧的投加量与COD_(Cr)总去除量比值为0.92,重复使用过程中铜基臭氧催化剂的催化能力具有很好的稳定性。  相似文献   

5.
沈拥军  苏平  欧昌进 《广东化工》2011,38(11):81-83
文章采用臭氧/活性炭组合工艺对甲基红印染废水进行降解试验,考察了甲基红废水的pH、活性炭投加量、温度和臭氧流量等参数对印染废水色度和CODCr去除率的影响,确定了臭氧/活性炭组合工艺降解甲基红印染废水的最佳工艺条件。结果表明,在pH为3.5,温度为25℃,活性炭投加量为120 mg/L,臭氧流量为0.83 L/min,初始浓度为10 mg/L的条件下降解10 min,臭氧/活性炭组合工艺对甲基红废水的脱色率达到97.4%,CODCr去除率达到85.2%。该组合工艺能有效地去除印染废水的色度和CODCr,使出水水质达到处理标准。  相似文献   

6.
为解决煤化工高盐废水COD去除率低带来的蒸发结晶杂盐率高,危废处理费用高的难题,考察了臭氧催化氧化-活性炭吸附耦合工艺对煤化工高盐废水COD的去除效果。对二次反渗透浓盐水开展臭氧催化氧化试验,对其出水开展活性炭吸附试验,最后在最佳工艺下开展臭氧催化氧化-活性炭吸附耦合工艺连续试验。结果表明:臭氧催化氧化试验最佳参数:催化剂投加量700 mg/L,臭氧气体浓度300 mg/L,臭氧通气量1.5 L/min;活性炭吸附试验最佳参数:活性炭投加量80 g/L,吸附时间60 min;在最佳工艺参数下开展耦合工艺100 h连续试验,结果表明:COD去除率稳定在78%~80%,出水COD的质量浓度稳定在80~90 mg/L,臭氧催化氧化-活性炭吸附耦合工艺对高盐废水COD去除效果明显。  相似文献   

7.
夏哲韬  史惠祥  殷璐 《工业水处理》2012,32(5):32-34,38
研究了活性炭吸附-催化臭氧氧化技术对印染废水特征污染物的去除效果,探讨了臭氧进气流量、活性炭投加量、pH对特征污染物去除效果的影响,并考察了活性炭-臭氧的协同作用。结果表明,苯乙酮被筛选为印染废水的特征污染物;活性炭吸附-催化臭氧氧化技术对苯乙酮的去除率随臭氧进气流量、活性炭投加量的增加而提高;臭氧进气流量50 mg/L、活性炭投加量200 mg/L、pH=10为最优工艺条件,反应20 min苯乙酮去除率即可达92.3%。  相似文献   

8.
针对制浆造纸厂生化出水难以达标排放的问题,采用单因素试验方法对比研究了预混凝-臭氧氧化法、预混凝-Fenton氧化法的深度处理效果。结果表明:预混凝-臭氧氧化法在PAC投加量为150 mg/L,臭氧投加量为367.5 mg/L时,COD_(Cr)的质量浓度可降至84.1mg/L,满足GB 3544—2008《制浆造纸工业污染物排放标准》;预混凝-Fenton氧化法在PAC投加量为150 mg/L, m(H_2O_2)∶m(COD_(Cr))=3∶1、 n(FeSO_4)∶n(H_2O_2)=1∶20时,COD_(Cr)质量浓度为92.1 mg/L,不满足GB 3544—2008的要求;臭氧氧化、 Fenton氧化2种高级氧化技术均可有效去除废水色度;随着H_2O_2投加量的增加,Fenton氧化法中H_2O_2的利用率越来越低。预混凝-臭氧氧化法的处理效果优于预混凝-Fenton氧化法,更适合制浆造纸废水的深度处理。  相似文献   

9.
黎兆中  汪晓军  梁仲海 《广东化工》2014,(9):139-140,122
采用臭氧催化氧化-曝气生物滤池工艺对印染废水进行深度处理。在室温条件下,试验水样体积为2000 mL,分别使用负载催化剂的陶粒和普通陶粒进行臭氧氧化实验。在通O3时间为15 min,臭氧的投加量达90 mg/L时,废水COD由125 mg/L下降到62 mg/L,去除率达到51%。废水水样中含较多难生物降解的有机物,经过臭氧催化氧化预处理之后,废水的可生化性得到改善。催化陶粒相对于普通陶粒表现出了更加良好的催化效果。采用臭氧催化氧化-曝气生物滤池工艺深度处理印染废水,COD的去除率达到66%,处理效果良好。  相似文献   

10.
采用投加助凝剂(PAM)、臭氧、粉末活性炭三种强化混凝沉淀工艺处理污水处理厂尾水,通过监测分析尾水处理前后的水质变化,研究助凝剂、臭氧、粉末活性炭对混凝沉淀工艺的强化效果。研究结果表明,混凝剂和助凝剂投加量比值为100:1时,COD_(Cr)、TP和浊度的去除效果明显提高,其中COD_(Cr)去除率比不投加助凝剂时提高将近15%。臭氧预氧化可以明显提高色度、氨氮、UV_(254)等指标的混凝去除效果,当投加5 mg/L的臭氧时,色度、UV_(254)的去除率比不投加臭氧时分别提升26.21%、17.89%。粉末活性炭不宜与混凝剂同时投加,混凝前30~60 min投加适量粉末活性炭(10~20 mg/L),可强化COD_(Cr)、TP和浊度的去除效果。  相似文献   

11.
采用粉末活性炭为催化剂,构建粉末活性炭耦合陶瓷膜臭氧催化氧化反应器,并探讨其对煤气化废水的深度处理效能。结果表明,当粉末活性炭投加2 g/L、臭氧投加量为30 mg/L时,煤气化废水生化出水COD为125~143mg/L,去除率可达75%,ΔCOD/Δρ(O_3)可达1.3。在HRT为30 min、膜通量为50 L/(m~2·h)时,粉末活性炭-陶瓷膜臭氧催化氧化反应器出水COD可保持为50 mg/L左右。反应器中的臭氧可有效将临界通量从35~40 L/(m~2·h)提高至50~60/(m~2·h),跨膜压差降低35%~40%,使反应器膜装置稳定运行。粉末活性炭-陶瓷膜臭氧催化氧化技术,可为煤气化废水深度处理提供有效的技术方案。  相似文献   

12.
以实际印染废水排放口的出水为研究对象,考察了微波辅助Fenton试剂氧化法深度处理印染废水的效果和影响因素。结果表明,微波辅助Fenton试剂氧化法对印染废水具有良好的深度处理效果,在进水COD_(Cr)为150~160 mg/L的条件下,处理出水COD_(Cr)小于60 mg/L,达到《污水综合排放标准》(GB 8978-1996)的一级标准。在试验条件下,最佳的反应参数为:初始pH为2.5,FeSO_4·7H_2O投加量为4.4 g/L,30%H_2O_2投加量为8 g/L,微波功率为500 W,微波反应时间为5 min。微波辅助Fenton试剂氧化法的COD_(Cr)去除率可达65.1%。  相似文献   

13.
以松花江吉林江段某断面的水样为研究对象,采用光催化氧化法、臭氧氧化法、活性炭吸附法对主要污染物的去除效果进行了比较。结果表明:三种方法对COD_(Mn)和氨氮都具有较好的去除能力。在光催化反应时间为3 h,Ti O_2的最佳投加量为0.8 g/L时,COD_(Mn)和氨氮的降解效率为37.5%和30.9%。在活性炭吸附时间为3 h,活性炭的投加量为7 g/L时,COD_(Mn)和氨氮的去除效率为22.52%和12.35%。在臭氧氧化时间为6 min,臭氧初始浓度为6 mg/L时,COD_(Mn)的降解效率为18.02%,而氨氮的浓度略有增加。  相似文献   

14.
本文通过试验研究了臭氧氧化-活性炭协同氧化法在印染废水预处理中的应用。结果表明,当原水CODCr为720 mg/L、BOD5为108mg/L时、色度为220倍时,活性炭装填量20 g/L、臭氧投加量4 g/h,该工艺最佳的反应时间为30 min。在此运行条件下,COD总去除率达到35%,色度去除率达90%,废水的B/C值从最初的0.15提高到0.30,大大提高了废水的可生化性,增强了印染废水的预处理效果。  相似文献   

15.
榆林某煤化工企业煤制油项目污水处理系统的反渗透浓水,具有含盐量高、难降解的特点,采用臭氧协同双氧水处理该废水,通过调试优选出臭氧投加量为270 mg/L,双氧水投加量为40 mg/L时, COD_(Cr)去除率能够达到57.1%以上,出水COD_(Cr)质量浓度小于50 mg/L,满足GB 31571—2015《石油化学工业污染物排放标准》要求。  相似文献   

16.
采用活性炭/双氧水/臭氧体系对某公司染料废水生化出水进行脱色中试研究。结果表明,该体系具有替代本项目现行物化脱色工艺的可行性,不仅技术可行,而且经济可行。反应水力停留时间为2 h,双氧水(27.5%)投加量为0.2‰,pH控制在中性或偏碱性,臭氧质量浓度为50 mg/L,气体流量为1 L/min;生化出水经过过滤塔初步过滤、反应塔催化氧化(催化剂投加量40%),色度低至40倍,COD浓度低至20 mg/L以下,优于排放标准。生化出水物化脱色现行费用为25.46元/t,活性炭/双氧水/臭氧体系运行费用为2.15元/t,新体系在保证效果的同时大大节约了运行成本。  相似文献   

17.
针对印染生化出水进一步脱色问题进行了混凝、臭氧氧化、二级生化好氧处理研究。试验结果表明,混凝与臭氧氧化联合处理对生化废水脱色效果明显,聚铝(液态,铝含量为7.5%)投加量为体积分数1.5‰,臭氧氧化接触时间为20 min时,色度去除率达70.8%;臭氧氧化可提高废水可生化性,臭氧氧化后废水COD为250 mg/L,氧化出水再经二级生化处理,COD降到135 mg/L。  相似文献   

18.
针对工业园区印染废水的特性,采用O3氧化、O3/H2O2协同氧化、O3催化氧化三组工艺对比,考察反应时间、H2O2投加量、O3投加浓度对印染废水处理效果的影响.结果表明臭氧催化氧化工艺是较合适的处理工艺,反应参数为进水流量1.2 m3/h、回流量2.5 m3/h、臭氧气体流量0.8 m3/h、臭氧投加浓度25 mg/L...  相似文献   

19.
以γ分子筛为载体,利用酸、碱浸渍及焙烧法制得Ta/Mn催化剂,初步探讨了催化剂的制备条件,并采用催化臭氧氧化技术深度处理石化废水二级生化出水。试验结果表明,在Ta、 Mn物质的量比为3∶1,焙烧温度为400℃,焙烧时间为5 h的条件下,催化剂性能达到最佳。在催化臭氧氧化时间为30 min,废水CODCr初始质量浓度为70 mg/L,催化剂投加量为1.5 g/L, pH值为7.5,温度为25℃的优化条件下,石化废水二级生化出水中CODCr去除率最高达到84.1%。  相似文献   

20.
《煤化工》2021,49(3)
为研究臭氧催化氧化去除煤化工高盐废水难降解有机物的规律,采用浸渍-焙烧法制备催化剂,以实际煤化工高盐废水为样品,研究载体、活性组分对COD去除率的影响,确定最佳臭氧催化剂,并研究有无催化剂、臭氧通气量、臭氧浓度、催化剂投加量对COD去除率的影响,确定最佳工艺参数;在此基础上初步探讨了臭氧催化氧化的反应动力学。研究结果表明:最佳催化剂选择活性氧化铝为载体,铁锰为活性组分;最佳工艺参数为:臭氧通气量1.5 m~3/h,臭氧质量浓度200 mg/L,催化剂投加量0.8 L/L;活性组分选择铁锰时,陶粒基催化剂和活性氧化铝基催化剂的反应速率常数分别是纯臭氧氧化的2.50倍和2.93倍,即臭氧催化氧化可有效提高难降解有机物的反应速率,并提高COD去除率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号