首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Abstract

An experimental programme was carried out to study the thermomechanical fatigue life of the nickel base superalloy IN738LC used in gas turbines. First, out of phase and in phase thermomechanical fatigue experiments were performed on uncoated and air plasma spray coated materials. In the temperature range investigated, it was observed that deposition of a NiCrAlY coating did not affect the thermomechanical fatigue resistance. A physically based life prediction model that takes into account the contribution of different damage mechanisms was then applied. This model successfully reflected the temperature and strain rate dependences of isothermal cycling fatigue lifetimes, and the strain–temperature history effect on thermomechanical fatigue lifetimes.  相似文献   

2.
Abstract

The present paper describes the isothermal and cyclic oxidation behaviour of the technologically important nickel base directionally solidified superalloy CM-247LC in air in the temperature range 1000-1200°C. This superalloy behaves as a transition nickel base alloy under isothermal oxidation conditions and exhibits a fairly long transient oxidation period (~20 h at 1100°C). Irrespective of the temperature of exposure and nature of oxidation (isothermal or cyclic), a composite oxide scale develops on CM-247LC. While the outer portion of the oxide scale consists of either spinel (NiAl2O4) or a mixture of spinel and NiO, depending on oxidation temperature, the inner portion is always constituted of alumina. Beyond the transient period, the alloy is found to follow parabolic oxidation kinetics. The oxide layer that forms is invariably very non-uniform in thickness, and is dispersed with two types of oxide particles. While tantalum rich oxide particles are found scattered in the outer zone of the oxide layer, hafnium rich oxide particles lie close to the oxide/metal interface. Results also reveal that the nature of oxidation associated with the CM-247LC superalloy causes entrapment of metal islands in the oxide layer.  相似文献   

3.
Abstract

The results of a study on the effect of γ′ particle size on the room temperature (23°C) low cycle fatigue (LCF) behaviour of a Ni base superalloy, Nimonic 90, is reported. The γ′ particle sizes were estimated from transmission electron micrographs. Ranges of particle sizes corresponding to underaged, peak aged, and overaged conditions were identified by examining the age hardening response curve. The solutionised samples had longer LCF lives compared with the aged alloys. Coffin-Manson and cyclic stress–strain plots showed bilinearity at a plastic strain amplitude of around 0.4% in the solutionised, underaged, and peak aged conditions. The observed bilinearity could be attributed to a change in the deformation mode from single slip to multiple slip. The cyclic stress response showed relatively stable behaviour for the peak aged and the overaged specimens compared with the underaged and the solution treated specimens.  相似文献   

4.
Components made of short glass fiber reinforced (SGFR) thermoplastics are increasingly used in the automotive industry, and more frequently subjected to fatigue loadings during their service life. The determination of a predictive fatigue criterion is therefore a serious issue for the designers, and requires the knowledge of the local mechanical response under a large range of environmental conditions (temperature and relative humidity). As the cyclic behavior of polymeric material is reckoned to be highly nonlinear, even at room temperature, an accurate constitutive model is a preliminary step for confident fatigue design.The injection molding process induces a complex fiber orientation distribution (FOD), which affects both the mechanical response and the fatigue life of SGFR thermoplastics. This paper presents an extension of the constitutive behavior proposed by the authors in a previous work [Launay et al., Int J Plasticity, 2011], in order to take into account the influence of the local FOD on overall anisotropic elastic and viscoplastic properties. The proposed model is written in a general 3D anisotropic framework, and is validated on tensile samples with various FOD and loading histories: monotonic tensions, creep and/or relaxation steps, cyclic loadings. In Part II of this paper [Launay et al., Int J Fatigue, 2012], this constitutive model will be applied to the simulation of different fatigue samples subjected to multiaxial cyclic loadings.  相似文献   

5.
Abstract

Measurements of the austempering kinetics and mechanical properties are presented for a ductile iron of composition Fe–3·51C– 2·81Si–0·25Mn–0·39Cu–0·13Mo–0·04Mg (wt-%) for austempering temperatures of 285, 320, 375, and 400°C after austenitising at 870°C for 120 min. The kinetic studies show that the alloying level is insufficient to cause a significant delay in ausferrite formation in the intercellular boundaries. This implies that the heat treatment processing window is open for all austempering conditions studied. The mechanical property measurements show that with the correct selection of austempering temperature all the grades of the ASTM Standard 897M : 1990 and BS EN 1564 : 1997 can be satisfied. The hardenability of the present iron is limited and it is therefore unlikely that these standards will be achieved in thicker section components.  相似文献   

6.
It is planned that the high voltage electrical insulation on the ITER feeder busbars will consist of interleaved layers of epoxy resin pre-impregnated glass tapes (‘pre-preg’) and polyimide. In addition to its electrical insulation function, the busbar insulation must have adequate mechanical properties to sustain the loads imposed on it during ITER magnet operation. This paper reports an investigation into suitable materials to manufacture the high voltage insulation for the ITER superconducting busbars and pipework. An R&D programme was undertaken in order to identify suitable pre-preg and polyimide materials from a range of suppliers. Pre-preg materials were obtained from 3 suppliers and used with Kapton HN, to make mouldings using the desired insulation architecture. Two main processing routes for pre-pregs have been investigated, namely vacuum bag processing (out of autoclave processing) and processing using a material with a high coefficient of thermal expansion (silicone rubber), to apply the compaction pressure on the insulation. Insulation should have adequate mechanical properties to cope with the stresses induced by the operating environment and a low void content necessary in a high voltage application. The quality of the mouldings was assessed by mechanical testing at 77 K and by the measurement of the void content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号