首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The strengthening mechanism of σ phase in a Fe20Cr9Ni cast austenite stainless steel used for primary coolant pipes of nuclear power plants has been investigated. The yield and ultimate tensile strengths of aged specimens increased comparing with those of the unaged ones. It was found that the increase of strengths is due to the hard and brittle (σ + γ2) structure which decomposed from α phase in the steel. Fracture surfaces of specimens after in situ tensile test showed that the inhibition of (σ + γ2) structure on the dislocation movements was more significant than ferrite although cracks started predominately at σ/γ2 interfaces. The (σ + γ2) structure behaves like a fiber reinforced composite material.  相似文献   

2.
It is well known that all substances in the universe exist stably in the lowest energy state, and a ball of substance with the same volume reveals the lowest surface energy. Therefore, without the interference of external factors, many plants grow freely into the nodular form from a nucleus, such as a peach or a plum. It is also found that after modification, the eutectic in as-cast manganese steel grows freely into a nodular shape, the growth pattern of which is similar to that of a peach or a plum. Thus here it is shown that some non-plants have a close parallel growth mechanism to that of plants. The mechanism is used for mutual reference between plants and non-plants when their growth mechanisms are studied.  相似文献   

3.
Abstract

Castings to the ASME SA351 CF3 specification used in modern pressurised water reactor nuclear power stations are mainly austenitic, but contain up to 20% ferrite, and as a result are subject to loss of toughness in service at about 300°C. To show adequate end of life toughness, tests are being carried out on material with accelerated aging above 300°C. Data on the kinetics of embrittlement are required, and it must also be shown that the significant metallurgical changes are the same at both temperatures. The kinetics has been investigated using Charpy impact specimens aged at 300, 350, and 400°C and it has been related to the hardening of the ferrite and to the microstructural changes in this phase. The activation energies determined for the embrittlement, for the hardening of the ferrite, and for the underlying spinodal reaction in the ferrite are consistent with that for chemical diffusion in this system.

MST/1187  相似文献   

4.
The microstructure and amount of retained austenite (the austenite remained at room temperature) evolved in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering at 620 °C have been investigated. The amount of retained austenite showed a parabolic trend with increase in tempering time, which can be attributed to the gradual decrease in the thermal stability of the reversed austenite (the austenite formed at high temperature). The influences of chemical composition, morphology of reversed austenite, and mechanical constraints originating from tempered martensite matrix on the thermal stability have been discussed. The precipitation and growth of M23C6 in reversed austenite dilute the carbon concentration in reversed austenite. The spheroidization of lathy reversed austenite during tempering decreases the interfacial energy barrier to the phase transformation of reversed austenite to martensite. Furthermore, the decrease in the strength of martensite matrix lowers the strain energy associated with the transformation of reversed austenite to martensite. All these factors during tempering weaken the thermal stability of reversed austenite and facilitate the phase transformation of reversed austenite to martensite during the cooling step of intercritical tempering.  相似文献   

5.
Abstract

The sequence of precipitation and its kinetics in 17–4 PH (precipitation hardening) stainless steel were studied by observing the electrical resistivity and microstructure of the alloy during isothermal aging at various temperatures in the range 320–600°C. By the absence of an incubation period for the onset of precipitation it is shown that there is no free energy barrier to nucleation. The electrical resistivity of the specimen decreased on prolonged aging approaching a steady value asymptotically with time. The alloys aged above 550°C were found to have higher final resistivity values than those aged at lower temperatures. By transmission electron microscopy, local reversion of the martensite to austenite, attributed to enhanced diffusion and concentration of copper atoms at the lath boundaries, was revealed in the specimens aged at temperatures above 550°C. The kinetics of precipitation in the system obeyed the Johnson–Mehl equation. The activation energy Q of the precipitation process was estimated to be 112·2 ± 3·6 kJ mol?l from the resistivity measurements. This may be understood in terms of an enhanced diffusion of copper atoms in the supersaturated matrix caused by a higher dislocation density and a higher concentration of quenched-in vacancies.

MST/826  相似文献   

6.
Bi-metallic corrosion resistant steel pipes were produced through explosive welding process. The weldability window of the stainless steel pipe (inner pipe) and the carbon steel pipe (outer pipe) was determined by the use of available semi-empirical relations. The impact velocity of the pipes as the most important collision parameter was calculated by the finite element simulation. Direct effect of the explosive mass reduction on the bonding interface of the pipes was studied. Optical microscopy study showed that a transition from a wavy interface to a smooth one occurs with decrease in explosive load.  相似文献   

7.
The dynamic properties of an intercritically annealed 0.2C5Mn steel with ultrafine-grained austenite–ferrite duplex structure were studied under dynamic shear loading. The formation and evolution mechanisms of adiabatic shear band in this steel were then investigated using interrupted experiments at five different shear displacements and the subsequent microstructure observations. The dynamic shear plastic deformation of the 0.2C5Mn steel was observed to have three stages: the strong linear hardening stage followed by the plateau stage, and then the strain softening stage associated with the evolution of adiabatic shear band. High impact shear toughness was found in this 0.2C5Mn steel, which is due to the following two aspects: the strong linear strain hardening by martensite transformation at the first stage, and the suppressing for the formation of shear band by the continuous deformation in different phases through the proper stress and strain partitioning at the plateau stage. The evolution of adiabatic shear band was found to be a two-stage process, namely an initiation stage followed by a thickening stage. The shear band consists of two regions at the thickening stage: a core region and two transition layers. When the adjoining matrix is localized into the transition layers, the grains are refined along with increasing fraction of austenite phase by inverse transformation. However, when the transition layers are transformed into the core region, the fraction of austenite phase is decreased and almost disappeared due to martensite transformation again. These interesting observations in the core region and the transition layers should be attributed to the competitions of the microstructure evolutions associated with the non-uniformly distributed shear deformation and the inhomogeneous adiabatic temperature rise in the different region of shear band. The 0.2C5Mn TRIP steel reported here can be considered as an excellent candidate for energy absorbers in the automotive industry.  相似文献   

8.
Abstract

Grain growth of coarse-grained austenite in Nb–V–Ti microalloyed steel during equalisation was predicted by extending the previous investigation. The prediction worked with initial austenite grain size distribution instead of average grain size. An improved model taking into account the holding time was used in the prediction. The result showed that only part of initial austenite grains grow at each equalisation temperatures, but the grain size of growing grains is expanded to a wider range with increasing equalisation temperature, which indicates that grain size distribution should be considered when grain growth of coarse-grained austenite is evaluated. The predicted austenite grain size distribution is close fit to the measured one and further work is expected to improve the quality of model prediction.  相似文献   

9.
Abstract

The dynamic recrystallisation (DRX) and static recrystallisation (SRX) behaviours of three V–Ti microalloyed steels were studied by the analysis of the true stress–strain curves and the stress relaxation curves under different deformation conditions. The results of DRX showed that deformation activation energy Qdef, peak stress and peak strain increased, as a result of the solute strengthening and dragging effect due to Si. The results of SRX showed that Si increased the SRX activation energy QSRX. The solute retardation parameter for static recrystallisation of Si was calculated. Based on the SRX results, to quantify the drag effect of Si and V, a new model was proposed to describe the time for 50% recrystallisation (t0·5), which was tested and verified by previously published data on similar steels. Precipitation during recrystallisation could lead to a lower value of the Avrami exponent.  相似文献   

10.
2 mm thick Fe–18.4Cr–15.8Mn–2.1Mo–0.66N high nitrogen austenite stainless steel plate was successfully joined by friction stir welding (FSW) at 800 rpm and 100 mm/min. FSW did not result in the loss of nitrogen in the nugget zone. The arc-shaped band structure, consisting of a small amount of discontinuous ferrite aligning in the bands and fine austenite grains, was a prominent microstructure feature in the nugget zone. The discontinuous ferrite resulted from newly formed ferrite during welding and the remained ferrite, whereas the fine austenite grains were formed due to dynamic recrystallization of the initial austenite during FSW. The fine dynamically recrystallized grains in the nugget zone significantly increased the hardness compared to that of the base material. The strength of the joint was similar to that of the base material, with the joint failing in the base material zone.  相似文献   

11.
Abstract

The hot band of a commercial continuous cast (CC) Al–Mg–Mn alloy was annealed at different temperatures ranging from room temperature to 510°C for 3 h. The evolution of microstructure and crystallographic texture was investigated during the annealing treatment. It was found that the recrystallised alloy exhibited a severely elongated grain structure and a texture that consisted of a new type of component ({113}〈110〉) and two fibre components (〈100〉//ND and 〈110〉//ND), the axes of which were along the normal direction of the rolling plane (ND) in 〈100〉 and 〈110〉 respectively. The 〈100〉//ND fibre was dominated by a ND rotated cube orientation {001}〈310〉, while the 〈110〉//ND fibre was mainly composed of Goss and P orientation ({011}〈566〉). The formation of the {113}〈110〉 texture and two fibre textures was likely to be attributed to the concurrent precipitation effect taking place upon heating in annealing treatment of the alloy.  相似文献   

12.
Abstract

The precipitation of σ-phase in the cold rolled specimens of an Fe–10Cr–30Mn steel was investigated by transmission electron microscopy after aging at 923 K. The specimens were prepared as a reduced activation austenitic steel for fusion reactor structures. During the aging, recrystallisation and discontinuous precipitation of σ-phase occurred simultaneously in the specimens with > 30% cold working (CW). The recrystallising interfaces moved toward the deformed and supersaturated solid solutions, leaving the precipitates of σ-phase behind the new recrystallised grains. The nucleation and growth behaviour of σ-phase is discussed.

MST/779  相似文献   

13.
Recent research suggests that extraordinary combinations of strength and ductility can be achieved in the so-called δ-TRIP steels, which contain ferrite, bainite and austenite. A part of the reason for the ductility of almost 40% elongation at a strength of some 900 MPa, is believed to be the optimal stability of the austenite to plastic deformation. We demonstrate here that mechanical stabilisation plays an important role in preserving the austenite to large plastic strains.  相似文献   

14.
The austenite to martensite transformation in a semi-austenitic stainless steel containing 17 wt-%Cr, 7 wt-%Ni and 1 wt-%Al was investigated with vibrating sample magnetometry and electron backscatter diffraction. Magnetometry demonstrated that, within experimental accuracy, martensite formation can be suppressed on fast cooling to 77 K as well as on subsequent fast heating to 373 K. Surprisingly, martensite formation was observed during moderate heating from 77 K, instead. Electron backscatter diffraction demonstrated that the morphology of martensite is lath type. The kinetics of the transformation is interpreted in terms of athermal nucleation of lath martensite followed by thermally activated growth. It is anticipated that substantial autocatalytic martensite formation occurs during thermally activated growth. The observation of a retardation of the transformation followed by a new acceleration during slow isochronal (i.e. at constant rate) cooling is interpreted in terms of the combined effect of the strain energy introduced in the system during martensite formation, which thermodynamically and/or mechanically stabilises austenite, and autocatalytic nucleation of martensite.  相似文献   

15.
Maraging steels containing 18 % nickel are based on a low-carbon iron-nickel-cobalt-molybdenum system. These steels demonstrate a remarkable combination of high strength and high toughness. To investigate the effect of overaging and resulting austenite reversion on the fatigue behavior of C250 maraging steel, specimens in the solution annealed state were overaged at 510 °C for various intervals, resulting in volume fractions of reverted austenite ranging from 2.6 % to 11.4 %. The staircase method was used to calculate the fatigue limit. S−N curves were generated by testing a minimum of four stress levels and at least three samples at each stress level. Basquin's equation was used to fit the experimental stress-life data, and the Basquin exponent and fatigue strength coefficient were calculated. The presence of 2.6 % reverted austenite in the microstructure improved the fatigue limit and fatigue ratio, without significantly reducing tensile strength. The results can be interpreted in terms of reverted austenite having a crack blunting effect on the propagating cracks. A small amount of reverted austenite in the range of 2 %–3 % vol has a beneficial effect on the fatigue life.  相似文献   

16.
There is a wide variety of stainless steel alloys, but all are characterized by a rounded stress–strain response with no sharply defined yield point. This behaviour can be represented analytically by different material models, the most popular of which are based on the Ramberg–Osgood formulations or extensions thereof. The degree of roundedness, the level of strain hardening, the strain at ultimate stress and the ductility at fracture of the material all vary between grades, and need to be suitably captured for an accurate representation of the material to be achieved. The aim of the present study is to provide values and predictive expressions for the key parameters in existing stainless steel material models based on the analysis of a comprehensive experimental database. The database comprises experimental stress–strain curves collected from the literature, supplemented by some tensile tests on austenitic, ferritic and duplex stainless steel coupons conducted herein. It covers a range of stainless steel alloys, annealed and cold-worked material, and data from the rolling and transverse directions. In total, more than 600 measured stress–strain curves have been collected from 15 international research groups. Each curve from the database has been analysed in order to obtain the key material parameters through a curve fitting process based on least squares adjustment techniques. These parameter values have been compared to those calculated from existing predictive models, the accuracy of which could therefore be evaluated. Revised expressions providing more accurate parameter predictions have been proposed where necessary. Finally, a second set of results, containing material parameters reported directly by others, with information of more than 400 specimens, has also been collected from the literature. Although these experimental results were not accessible as measured raw data, they enabled further confirmation of the suitability of the proposed equations.  相似文献   

17.
Abstract

Tensile samples of a C–Mn–Nb–Al steel (BS 4360: 50D grade) have been cast in situ and either directly tested in the temperature range 850–1200°C, or were allowed to cool through the transformation, re–solution treated, and then tested in the same temperature range. The hot ductility of the directly tested cast material was found to be superior to that of the reheated material. Carbon extraction replicas taken close to the fracture surfaces showed large differences in the distribution of sulphide inclusions and NbCN precipitates along the γ boundaries. The directly cast material had sulphide inclusions and NbCN precipitates present in the form of coarse particles situated close to the interdendritic boundaries. A significant proportion of these coarse sulphide inclusions and NbCN eutectics, produced during solidification, redissolved on reheating at 1330°C, and subsequently precipitated in a much finer form at the γ grain boundaries, reducing hot ductility. It appears likely that the very marked segregation which occurred during solidification enhanced the interdendritic regions with sulphur to such an extent that the sulphideformed was (Mn, Fe)S, which in gradually changing to the equilibrium precipitate, depleted the surrounding matrix of manganese. The low manganese level accompanying these inclusions allowed a greater degree of solution of the sulphides to occur on reheating and accounted for the subsequent fine precipitation at the boundaries.

MST/361  相似文献   

18.
Abstract

Breakaway oxidation of 15–18 % Cr ferritic stainless steels occurring in water vapour is described in the temperature range 800–1000°C. The failure of the protective chromia scale leads to iron oxide(s) nodule formation with accelerated kinetics. Characterisation of the (Fe,Cr)2O3 initial oxide scale by Raman spectroscopy and photoelectrochemistry shows chemical evolution with oxidation time, with increasing Cr/Fe ratio before haematite suddenly appears at the steel-oxide interface. The mechanisms for such a phenomenon are discussed, first on a thermodynamic point of view, where it is shown that chromium (VI) volatilisation or chromia destabilisation by stresses are not operating. It is rather concluded that mechanical cracking or internal interface decohesion provide conditions for haematite stabilisation. From a kinetic point of view, rapid haematite growth in water vapour compared to chromia is thought to be the result of surface acidity difference of these two oxides.  相似文献   

19.
Abstract

To improve impact toughness of the nanostructured bainite–austenite steel, a heat treatment operation was developed to divide prior austenite grains by plates of martensite directly before isothermal transformation. In the investigation, nanostructured steel containing 0·55%C, 1·95%Mn, 1·82%Si, 1·29%Cr and 0·72%Mo was used. It was found that a partial transformation to martensite achieved by cooling to 160°C followed by direct isothermal transformation to bainite at 225°C was the most promising treatment to improve Charpy impact energy of the investigated steel. For each testing temperature: ambient, 0, ?20, ?40 and ?60°C, the specimens subjected to the developed treatment showed a higher averaged impact energy than the specimens subjected to the standard treatment.  相似文献   

20.
Abstract

Cleavage fracture of a 26Cr–1Mo ferritic stainless steel has been studied using fatigue precracked specimens. The parameters determined were fracture toughness, cleavage fracture strength, and effective surface energy of ferrite. The results have been compared with earlier results on notched specimens.

MST/185  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号