共查询到20条相似文献,搜索用时 359 毫秒
1.
《Materials Science & Technology》2013,29(10):1326-1330
AbstractThe influence of the composition and heat treatment of overlays on the abrasive wear resistance of iron base hardfacing alloy overlays is reported. Overlays were deposited using a shielded metal arc (SMA) welding process on structural steel using two commercial hardfacing electrodes, i.e.Fe – 6%Cr – 0.7%C (H1) and Fe – 32%Cr – 4.5%C (H2). Abrasive wear resistance of overlays in as welded and heat treated conditions was tested using a pin on disc system against a 300 grade waterproof SiC polishing paper at different normal loads (1 – 4 N) and constant sliding speed 2.0 m s-1. Optical microscopy was used to study the microstructure of overlays in as welded and heat treated conditions. SEM studies of wear surfaces were carried out to analyse wear mechanisms. It was found that the wear resistance of the high Cr – C coating is better than the low Cr – C hardfacing under identical conditions. Significant variation in hardness was noticed across the interface, indicating the effect of dilution. Hardness of the coating adjacent to the interface was found to be comparatively lower than the coating further away from the interface. Post-weld heat treatment enhanced the abrasive wear resistance. 相似文献
2.
Shihong ZHANG Zhongtang WANG Bing QIAO Yi XU Tingfeng XU Institute of Metal Research Chinese Academy of Sciences Shenyang China Shenyang Ligong University Shenyang China 《材料科学技术学报》2005,21(2):175-178
The processing parameters of tube extrusion for superalloy Inconel 718 (IN 718), such as slug temperature, tools temperature, choice of lubricant, extrusion ratio and extrusion speed, were determined by experiment in this paper. An appropriate temperature range recommended for the slug is 1080~1120℃, and the temperature range recommended for the tools is 350~500℃. The microstructural evolution of superalloy IN 718 during tube extrusion was analyzed.With the increase of the deformation the cross crystal grains were slightly refined. While the vertical crystal grain is elongated evidently and the tensile strength increased along the axial rake. Glass lubricants have to be spread on the slug surface after being heated to 150~200℃, vegetable oil or animal oil can be used as the lubricant on the surface of the tools to reduce the extrusion force remarkably. 相似文献
3.
《Materials Science & Technology》2013,29(7):859-865
AbstractA scalable, continuous variable, cellular automaton (CA) model for the quantitative simulation of normal grain growth is presented. The CA model is based on a discrete solution of the classical Turnbull rate equation for grain boundary motion on a mesoscopic scale. The domain is discretised using a regular cubic lattice considering the first and second nearest neighbourhoods. CA rules were usedto determine the state of each cellbased on the local driving force. The effects of both the boundary curvature and the misorientation of grains were incorporated. The driving force was used to determine the direction of the movement of each boundary cell, forming the basis of a continuous variable cell transition rule. The use of experimental grain boundary characteristics (e.g. energy and mobility) allows one to make predictions on industrially applicable spatial and temporal scales. The model was applied to quantitatively predict grain growth during the homogenisation heat treatment of vacuum arc remelted Inconel 718. 相似文献
4.
《Materials Science & Technology》2013,29(5):577-584
AbstractThe present paper is devoted to an analysis of clad residue formation during a controlled atmosphere brazing (CAB) process applied to composite aluminium brazing sheets. Evolution of the microstructure of the clad residue, and in particular the mass of resolidified clad formed, were studied. Observations confirmed that, even under optimal brazing conditions, a residue layer (formed away from the joint zone) always appears after brazing. It was established that the peak brazing temperature plays an important role in the process responsible for formation of the residue mass. However, dwell time at the peak brazing temperature does not have a significant influence on clad residue mass accumulation beyond its known influence on substrate dissolution and core metal erosion in the joint zone. 相似文献
5.
The microstructural evolution of TiAl matrix composites with a novel network distribution of Ti2AlN particle reinforcement was studied. The composites were synthesized by reaction hot pressing method using pure Al and nitrided Ti powders as initial materials. Pure Ti powders nitrided at 600 °C for a certain time in an atmosphere of flowing nitrogen turned into new compound Ti(N) powders, which have a shell of titanium nitrides (such as TiN, Ti2N and TiN0.3) and a core of Ti–N solid solution. Within the composites synthesized, Ti2AlN particles, produced by in situ reaction, exhibit a network distribution. The special shell/core structure of the compound Ti(N) powders contributes to this architecture. Nitriding time of the Ti powders greatly affects the microstructure of the composites. Increasing the nitriding time is beneficial to the distribution of Ti2AlN particles in a continuous network form. However, too long nitriding time can result in the aggregation of Ti2AlN particles and thus destroy the uniformity of the network structure. The in-situ synthesized Ti2AlN/TiAl composites with uniform network structure have a superior mechanical property, and their compressive strengths at 800 °C and 1000 °C are 1112 MPa and 687 MPa, respectively. 相似文献
6.
Ryan P. Koseski Pavan Suri Nicholas B. Earhardt Randall M. German Young-Sam Kwon 《Materials Science and Engineering: A》2005,390(1-2):171-177
The present study investigates the microstructural evolution and densification behavior of water- and gas-atomized 316L stainless steel powder. Dilatometry and quenching studies were conducted to determine the extent of densification and corresponding microstructural changes. Results indicate that water-atomized powder could be sintered to 97% of theoretical density, while gas-atomized powders could be sintered to near-full density. The difference in the densification behavior is examined in terms of the particle morphology, initial green density and the particle chemistry. 相似文献
7.
《Materials Science & Technology》2013,29(12):1429-1438
AbstractMicrostructural evolution and flow behaviour during hot compression of twin roll cast ZK60 magnesium alloy were characterised by employing deformation temperatures of 300, 350 and 400°C and strain rate ranging from 10?3 to 100 s?1. When compressed at 10?3 s?1, all stress–strain curves at different temperatures (300, 350 and 400°C) showed a flow softening behaviour due to active dynamic recrystallisation. When compressed at 10?2 s?1 and elevated temperatures (300, 350 and 400°C), all stress–strain curves showed a flow stress drop after peak stress due to twinning for 300 and 350°C deformation and recrystallisation for 400°C deformation. The balance between shear deformation and recrystallisation resulted in a steady flow behaviour after the true strain reached 0·22. When strain rate increased to 10?1 s?1, a small fraction of dynamic recrystallisation in shear deformation region was responsible for slight flow softening behaviour during compression. A flow hardening appeared due to basal and non-basal slips when deformed at 100 s?1. It is suggested that the flow behaviour during hot compression of twin roll cast ZK60 alloy depends on the separating effect or combined effects of shear deformation, twinning and recrystallisation. 相似文献
8.
1Cr15Ni36W3Ti was thermally exposed at 580 ℃ and 680 ℃,respectively,up to 3000 h.The γ'phase and intergranular TiC carbides continuously coarsened during exposure.None of η,laves or σ phase was discovered in the exposed samples,indicating good microstructure stability under the present exposure conditions.The ripening process of the γ'phase could be well modelled utilizing the LSW theory.The evolutions of the yield and tensile strengths were monotonous during exposure at 580 ℃.However,a transition point in strengths was detected in the tensile samples exposed at 680 ℃ for 300 h.Accordingly,the critical γ'diameter was measured to be 13-14 nm.The γ'/dislocations interaction mechanism transformed from shearing to looping with the γ'diameter exceeding the critical point.The combination of the weakly coupled dislocations model and the Orowan looping model yielded a critical diameter of 13.1 nm which coincided well with the measured one,indicating the applicability of these two strengthening models for 1Cr15Ni36W3Ti.The present exposure conditions did not exert a profound effect on the fracture mode.All the tensile samples underwent a typically ductile fracture with a dimple pattern dominating the fracture surface.The dispersed deformation induced by the prevalence of dislocation looping in the over-aged tensile samples retarded the propagation of intergranular cracks.The declined precipitation hardening increment and the enhanced deformation homogeneity partially recovered the tensile ductility in the over-aged samples exposed at 680 ℃. 相似文献
9.
The microstructure evolution and its effect on the impact toughness of a new Ni-Fe based alloy GH984 G,used in 700℃ ultra-super critical coal-fired power plant,were investigated during thermal exposure at 650℃-750℃ for up to 10,000 h.The results show that the impact toughness at room tempe rature drops rapidly at the early stage during thermal exposure at 700℃ and then has no significant change even if after exposure for 10,000 h.The significant decline of the impact toughness is attributed to the coarsening of M23C6 carbides at grain boundaries,which weakens the grain boundary strength and leads to the aging-induced grain boundary embrittlement.The M23C6 carbides have almost no change with further thermal exposure and the impact toughness also remains stable.Additionally,the impact toughness rises with the increase of thermal exposure temperature.The size of γ' after thermal exposure at 750℃ for10,000 h is much bigger than that at 650℃ and 700℃ for 10,000 h.There fore,the intragranular strength decreases significantly due to the transformation of the interaction between γ' and dislocation from stro ngly coupled dislocation shearing to Orowan bowing.More plastic deformation occurs within grains after thermal exposure at 750℃ for 10,000 h,which increases the impact toughness. 相似文献
10.
Plates of Inconel 718 in precipitated state have been subjected to ultrasonic shot peening (USP), varying the distance from the radiating surface of the booster to the sample, the processing time and the material (WC/Co and steel) and number of shot balls, in order to study the effect of these parameters on the final state generated by the USP process. A change to more compressive residual stresses at the surface of the treated parts has been measured in all cases. For higher USP processing times and/or lower booster-sample distances, the degree of plastic deformation in the treated material increases, leading to a change to more compressive surface stresses and a higher density of impact marks in the treated surface. The same occurs when WC/Co balls are used instead of steel balls. The tendency to more compressive stresses reaches a saturation level after a certain processing time, when the system is not able to force the material to continue with more plastic deformation. If a higher quantity of balls is used, there will be less impacts of the shots with the surface and their energy will be lower (due to losses of energy after inelastic collisions). This diminishes the effect of the impacts in introducing compressive stresses and leads to less and shallower impact marks in the treated surface. 相似文献
11.
12.
Micromechanical constitutive equations are developed which allow for the broad range of interparticle interactions observed in a real deforming granular assembly: microslip contact, gross slip contact, loss of contact and an evolution in these modes of contact as the deformation proceeds. This was accomplished through a synergetic use of contact laws, which account for interparticle resistance to both sliding and rolling, together with strain-dependent anisotropies in contacts and the normal contact force. By applying the constitutive model to the bi-axial test it is demonstrated that the model can correctly predict the evolution of various anisotropies as well as the formation of a distinct shear band. Moreover, the predicted shear-band properties (e.g. thickness, prolonged localisation, void ratio) are an even better fit with experimental observations than were previously found by use of previously developed micromechanical models. 相似文献
13.
Mehrdad Mohammadi Ali Siadat Jean-Yves Dantan Reza Tavakkoli-Moghaddam 《国际生产研究杂志》2013,51(7):2202-2224
This study develops a new optimisation framework for process inspection planning of a manufacturing system with multiple quality characteristics, in which the proposed framework is based on a mixed-integer mathematical programming (MILP) model. Due to the stochastic nature of production processes and since their production processes are sensitive to manufacturing variations; a proportion of products do not conform the design specifications. A common source of these variations is maladjustment of each operation that leads to a higher number of scraps. Therefore, uncertainty in maladjustment is taken into account in this study. A twofold decision is made on the subject that which quality characteristic needs what kind of inspection, and the time this inspection should be performed. To cope with the introduced uncertainty, two robust optimisation methods are developed based on Taguchi and Monte Carlo methods. Furthermore, a genetic algorithm is applied to the problem to obtain near-optimal solutions. To validate the proposed model and solution approach, several numerical experiments are done on a real industrial case. Finally, the conclusion is provided. 相似文献
14.
利用Gleeble-1500D热模拟试验机研究Ni-Cr-Mo系低合金SA508Gr.4N钢在变形温度为850~1200℃,应变速率为0.001~1 s-1,真应变为0.9条件下的等温热变形行为,建立包含动态回复和动态再结晶的基于物象的流变应力模型与动态再结晶晶粒尺寸模型,并提出避免粗大晶粒组织遗传性的适宜锻造工艺。结果表明:随着变形温度的升高,应变速率的降低,动态再结晶体积分数和晶粒尺寸逐渐增加;SA508Gr.4N钢的真应力-真应变曲线具有明显的不连续动态再结晶现象;通过实验值和模型预测值对比可得流变应力模型的相关系数(R)及平均相对误差(MRE)分别为0.998和4.76%,动态再结晶晶粒尺寸模型的相关系数(R)及平均相对误差(MRE)分别为0.991和8.69%,两个模型均具有较高的准确性。 相似文献
15.
16.
The effect of the matrix–fibre interface bonding and debonding condition on the crack growth behaviour in a fibre-reinforced ceramic matrix composite was studied using a model glass fibre-reinforced PMMA matrix composite. The crack growth process from a centre notch is monitored using a compression splitting test. From direct observation three characteristic stages can be identified in the crack growth process of the composite, namely elastic constraint (stage I), matrix crack bowing (stage II) and crack bridging (stage III). Partial interface debonding occurs at the end of stage I and cylindrical interface debonding occurs at the end of stage II. The crack growth rate is accelerated just after the onset of interface partial debonding and this indicates that a debonded interface reduces the crack growth resistance. The partial interface debonding which occurs before fibre breaking plays an important role on the crack growth mechanism. 相似文献
17.
《材料科学技术学报》2024,191(24)
In this study,a high-ductility AZ91 magnesium alloy was fabricated by the novel continuous rheo-squeeze casting-extrusion(CRSCE)process.The semi-solid slurry was prepared by ultrasonic vibration(UV)treat-ment,then solidified under pressure,and finally hot extruded.UV treatment can reduce the Al element content in primary grains and increase it in secondary grains.The refined Mg17Al12 phase was scattered along secondary grain boundaries and then stretched into narrow,fibrous bands during the hot extrusion.The fibrous bands with proper separation distances can accelerate the dynamic recrystallization(DRX)process and suppress the growth of DRXed grains.Microcracks were initiated inside the brittle Mg17Al12 phase and tended to propagate along the continuously distributed Mg17Al12 phase during the tensile test.Thus,the tiny Mg17Al12 phase in the billet and narrow,fibrous bands in as-extruded rods can prevent cracks from spreading and enhance ductility.Therefore,excellent comprehensive mechanical properties were obtained,with an ultimate tensile strength of 326.3 MPa and an elongation of 16.46%.The CRSCE method offers a novel way to fabricate high-ductility and high-alloyed magnesium alloys without ho-mogenization.Microstructure regulation mechanisms of CRSCE,microstructural hereditary laws,and the effect of the Mg17Al12 phase on mechanical properties were further discussed. 相似文献
18.
19.
Jennifer Dewalque Rudi Cloots Olivier DubreuilNatacha Krins Bénédicte VertruyenCatherine Henrist 《Thin solid films》2012,520(16):5272-5276
This study quantifies the highest perturbation encountered by the first layer of a TiO2 12 layers-mesoporous coating, which is submitted to a multistep calcination process. Besides, we propose an alternative thermal treatment in order to limit the degradation induced by repeated calcinations. This paper reports and compares the modifications in film thickness, surface area, anatase crystallite size and global crystallinity of films obtained from different thermal treatments. It defines the maximum crystal size compatible with the preservation of the mesoarchitecture initially induced by templating. Differences in microporosity and rate of crystallization are also discussed. 相似文献
20.
Large tensile stresses (up to 3 GPa) were previously observed in low-mobility metallic Mo1 − xSix films grown on amorphous Si and they were ascribed to the densification strain at the amorphous-crystalline transition occurring at a critical film thickness. Here, we focus on the influence of the nucleation conditions on the subsequent stress build-up in sputter-deposited Mo0.84Si0.16 alloy films. For this purpose, growth was initiated on various underlayers, including amorphous layers and crystalline templates with different lattice mismatch, and the stress evolution was measured in situ during growth using the wafer curvature technique. Tensile stress evolutions were observed on amorphous SiO2 and (111) Ni underlayers, similarly to the stress behaviour found on amorphous Si. For these series, the films were characterized by large in-plane grain size (~ 500 nm). However, on a (110) Mo buffer layer, a different stress behaviour occurred: after an initial tensile rise ascribed to coherence stress, a reversal towards a compressive steady state stress was observed. A change in film microstructure was also noticed, the typical grain size being ~ 30 nm. The origin of the compressive stress source in the metastable Mo0.84Si0.16 alloy grown on (110) Mo is discussed based on the stress evolutions measured at varying deposition rates and Ar working pressures, as well as in comparison with stress evolutions in pure Mo films. 相似文献