首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The optimisation and selection of process plans is very important for laser bending of sheet metal to achieve the anticipated bending deformation. In this paper, an adaptive fuzzy neural network has been proposed to predict the bending deformation. This network integrates the learning power of neural networks with fuzzy inference systems. During the establishing process of the energy density (composed of three process parameters: laser power, scanning velocity, and spot diameter), width, thickness of sheet, and scanning path curvature were taken as four input variables of the network. The gradient descent learning algorithm was applied to optimally adjust the weight coefficients of the neural network and the parameters of the fuzzy membership functions. Then, the trained network was used to predict the laser bending deformation. Good correlation was found between the predictive and experimental results.  相似文献   

2.
选择性激光烧结(SLS)中工艺参数和扫描路径对烧结件性能有较大影响,文中研究了激光烧结工艺参数和扫描路径对峰值温度的影响规律。通过建立SLS的温度场模型并开发C++的有限元模拟软件,分析了激光功率、激光扫描速率及预热温度等工艺参数对SLS峰值温度的影响,对比了不同扫描路径下高分子粉末和金属粉末的SLS峰值温度变化规律。数值算例表明,SLS温度场中峰值温度随激光功率和预热温度的升高而升高,随激光扫描速率的升高而降低;扫描路径对高分子粉末SLS峰值温度的影响较小;开发的温度场模型准确合理,能够为实际生产提供理论依据。  相似文献   

3.
Abstract

In this paper, the influence of beam polarisation in the laser bending process was experimentally studied. Based on the laser beam polarisation, the laser absorption of the metallic specimen could be enhanced by increasing the incident angle. The bending angles are achieved in stainless foil specimens without absorptive coatings, and larger bending angles can be produced by single laser scanning with higher incident angles. Multipass laser bending experiments were also carried out on the same material with graphite coatings. The results show that the bending angle per pass is affected obviously by the beam polarisation at lower laser line energy; and the bending angle per pass increases significantly when the total bending angle is large enough. When using polarised light, the laser beam distortion and laser absorption change induced by the variation of the absorptive coatings and laser incident angle are the two main factors that affect the coupled laser energy. The bending rule is the synthesis effect of the two factors.  相似文献   

4.
为研究铺放工艺参数对复合材料预浸料丝束曲线铺贴质量的影响规律及作用机制,首先自主设计并搭建了可模拟铺丝机曲线铺贴运动的试验平台,进行了变铺放工艺参数与变铺放半径的预浸料丝束曲线铺贴试验.通过测量计算有效贴合长度比、褶皱角度及曲率半径比,并结合变铺放工艺参数的单因素剥离试验对铺放质量进行了表征.结果表明:曲线铺贴质量与预...  相似文献   

5.
针对铝合金-聚合物复合层板弯曲回弹问题,分析了复合层板弯曲过程表面层铝板及中心层聚合物的变形特征,建立了复合层板平面应变纯弯曲回弹理论分析模型.采用建立的模型预测了复合层板纯弯曲过程回弹角变化,并与实验结果进行了对比,分析了聚合物层厚度及铝合金板材力学性能对回弹的影响规律.结果表明:随着中心聚合物层厚度的增加,复合层板回弹角降低;随着表面层铝板强度的降低,复合层板回弹角减小.理论预测结果与实验结果一致,说明了本文推导的理论模型的可靠性.  相似文献   

6.
目的 减小铝合金交叉筋壁板激光热诱导锥面成形过程中的边缘效应。方法 利用有限元分析方法,通过对扫描线温度、应力应变分布的分析,得到边缘效应产生的原因;研究激光功率、扫描速度、扫描次数对边缘效应的影响,选择合适参数,采用激光热诱导成形系统,对5A06铝合金交叉筋壁板进行锥面成形试验,并用扫描仪检测成形精度。结果 边缘效应随着扫描速度的减小、激光的功率变大而减小,与单次扫描相比,两次扫描能有效减小边缘效应。试验证明,扫描速度对边缘效应的影响最大,将扫描速度保持在30 mm/s以下,调整激光功率和扫描速度控制能量密度,在保证弯曲角度的同时,也能较好抑制边缘效应。  相似文献   

7.
裴继斌  张立文  张全忠  王存山  董闯 《材料工程》2006,(Z1):180-182,185
对厚钢板的激光弯曲成形过程进行数值模拟.建立了钢板激光弯曲成形的三维非线性瞬态热力耦合有限元模型,模型中考虑了材料热物性参数和力学性能参数与温度的相关性.计算了钢板激光弯曲成形过程中的温度和应力,并预测了钢板的弯曲角度.模拟结果表明,厚度方向的温度梯度是导致钢板弯曲变形的主要原因.对数值模拟的结果进行了相应的实验,模拟结果与实验结果符合较好.  相似文献   

8.
Abstract

Laser forming is a thermoelastoplastic and complicated process. Finite element model simulation is time consuming and the analytical model is cumbersome for computing the bending angle. A model for bending angle in laser forming is constructed using adaptive fuzzy logic called adaptive network fuzzy inference system (ANFIS). The ANFIS model is trained with the published experiment data, in which the laser forming process parameters include thickness of the plate, laser power, laser beam diameter and scanning velocity. Trained ANFIS model is also tested on experiments not pertaining to previous training data. The performance of ANSIF model is optimised as a function of a type of membership function and number of membership functions. Optimised ANFIS model well predicts the results compared with the experiment data. Based on the established model, the analysis results of the process parameters show that a maximum bending angle can be achieved by choosing a reasonable laser beam diameter given other laser forming parameters.  相似文献   

9.
ABSTRACT

In this research, the effects of Selective Laser Melting (SLM) process parameters comprising laser power, scan speed, hatch space and scan pattern angle on the formation of porosity and subsequently density have been analysed. To improve the mechanical properties, post-processes (heat treatment) must be performed. Therefore, heat treatment was added to the design of experiment to analyse the effect of this process coupling with SLM process parameters on the value of density. A comprehensive design set with five levels for each parameter was selected so Taguchi L25 was used as the design of experiment. The significance of each parameter on obtained results was examined using statistical analysis (F-Test) and numerical model (interrogator analysis). The correlation between two process parameters was discussed by using 3D analytical and contour plots and the mechanisms behind these were discussed in depth. The contribution of this paper is a deep investigation of the relation of process parameters and heat treatment on density based on the Artificial Neural Network model. Results showed that better density is obtained with lower scan speed, laser power and scanning pattern angle. Meanwhile, for heat treatment and hatch space, the best density was obtained in their optimum range.  相似文献   

10.
刘雪  堵同亮  彭雄奇  陈军 《功能材料》2012,43(9):1099-1101,1105
通过对PP木纤维复合材料进行应变率为10-4~10-2s-1、温度为90、130、170℃下的单向应力条件下的力学性能试验,结果表明,PP木纤维复合材料的力学响应对温度和应变率都是敏感的,并且升高温度与降低应变率对PP木纤维复合材料的力学性能有等效的影响。利用Maxwell模型提出了该PP木纤维复合材料的一个非线性热粘弹性本构方程,拟合出了相应的粘弹性参数。利用该本构模型模拟了PP木纤维复合材料的热压缩实验,理论计算所得应力-应变曲线与实验结果吻合较好。  相似文献   

11.
用HVS-1000显微硬度测试仪、X-350A型X射线应力测定仪,以2.5 kW SM2000SM快轴流CO2激光器对0.6 mm厚的TA2板料进行扫描,按照正交试验理论安排成形工艺参数,研究了TA2板料弯曲成形时主要工艺参数对弯曲角度的影响,以及试样表面残余应力的分布和试样断面上的显微硬度变化。结果表明:正交试验中的4个工艺参数的作用是不同的,按其变化对弯曲变形量影响的大小排序,依次是扫描次数、光斑直径、激光束功率、扫描速度;成形参数对试样表面的残余应力分布也存在一定的影响;试样变形区断面上的显微硬度变化呈现出一定的规律。  相似文献   

12.
Parts I [1] and II [2] of the present paper introduced systematic models for the computation of thermal effects on strength and stiffness of unidirectional polymer matrix composites (PMC's) as well as the life prediction of these materials in end-loaded bending at elevated temperatures. The last step of this study was the possibility of introducing such models in durability codes such as MRLife [3]. A recent method was developed for the experimental characterization of end-loaded bending fatigue behavior of composites at elevated temperatures. The literature dealing with the durability of composite materials in bending focuses mainly on 3 and 4 point bending [4–6]. A limited set of data as well as the basis for theoretical modeling for fatigue end-loaded bending is available in the literature [7]. However, the life prediction scheme required elevated temperature experiments. New experiments in fatigue bending were performed in order to complete the available data. Microscopic observations revealed new information for the understanding of the damage process of unidirectional AS4/PPS composites in end-loaded fatigue bending. Finally, the models developed in Parts I and II were integrated into the MRLife integral enabling the life prediction of unidirectional PMC's under combined mechanical and thermal loads from room temperature experimental data.  相似文献   

13.
为了明晰激光增材制造翘曲变形行为,获得相关变形规律。对Inconel 625高温合金激光增材制造工艺对零件变形量的影响进行了分析,实验结果表明:扫描路径的长度决定翘曲变形量的大小;不同工艺参数对翘曲变形量的影响程度不同;激光增材制造加工过程一般会同时引起两个方向的翘曲变形;同时翘曲变形量随着激光功率的增加而增加,随着扫描速度的增加而增加,随着送粉速度的增加而减少。  相似文献   

14.
Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.  相似文献   

15.
Abstract

Soldering experiments of chip scale package devices were carried out by means of diode laser soldering system with Sn–Ag–Cu solders. In addition, pull tests and a scanning electron microscope were used to analyse the effect of processing parameters on mechanical strength of solder joints. Viscoplastic finite element simulation was utilised to predict solder joint reliability for different package geometry under accelerated temperature cycling conditions. The results indicate that under the conditions of laser continuous scanning mode as well as the fixed soldering time, an optimal power and package geometry exists, while the optimal mechanical properties of microjoints are gained.  相似文献   

16.
Laminated metal composites are of great interest in various industries. Previous studies demonstrate undesired mechanical or microstructural changes in these composites during the laser forming process due to rapid temperature gradient. In this research, underwater laser forming is proposed to minimize this effect. This process could also be an effective method for on-site forming or repairing of large metal/composite sheets used in underwater applications, such as marine equipment, ships, and lake/sea-based offshore oil platforms. The underwater laser forming process is performed experimentally on a three-layered stainless steel/copper/stainless steel composite and compared with the results of in-air tests. Total forming time, bending rate, and microstructural changes are compared for both underwater and in-air conditions. The effects of forming parameters, such as the number of irradiations, laser beam velocity, diameter, and power, are also compared and discussed. It is shown that the bending angle per irradiation in underwater forming is significantly lower in comparison with in-air condition, but the production time is less due to the elimination of cooling time. Also, the microstructure of stainless steel at heat-affected zone was unchanged, and the hardness of upper layer experienced smaller changes when formed under water. The underwater laser forming process is demonstrated to be feasible and can be applied for underwater applications with a high degree of reliability.  相似文献   

17.
Laser bending of sheet metal is a flexible forming technique by using laser scanning. Based of temperature gradsmechanism, the temperature field of sheet metal bending process by using single laser scanning is studied with theANSYS soft. A finite element  相似文献   

18.
目的 针对TiB2/AlSi10Mg开展激光选区熔化成形研究,获得工艺参数影响规律并优化工艺参数.方法 采用正交试验法设计三因素四水平正交试验,进行TiB2/AlSi10Mg激光选区熔化成形,分别研究激光功率、扫描速度、扫描间距等3种工艺参数对TiB2/AlSi10Mg致密度和硬度的影响规律,分析激光能量密度对铝合金内...  相似文献   

19.
During laser surface melting of steel components, obtaining the desired distribution of microstructure and residual stresses with minimum distortion is essential for production goals and reliable service performance. In this study, a three-dimensional finite element based model, which is integrated into commercial finite element analysis (FEA) software SYSWELD by means of user subroutines, has been developed to simulate the wide-band laser surface melting (LSM) processing and predict temperature history and stress field with different laser scanning speed. In the proposed computational procedure, thermal, metallurgical transformation and mechanical aspects were taken into account, and the heat transfer analysis, the temperature dependent on material properties and a coupled transient thermo-mechanical analysis were used. Effects of laser scanning speed on melting temperature field and residual stress were investigated. The simulation results show that laser scanning speed changes have significant effects on melting residual stress. For experimental verification, laser surface melting of thin plate 42CrMo4 steel was achieved by a 5 kW continuous wave CO2 laser with laser scanning speed from 10 m/s to 30 m/s. The computational results are in good agreement with experimental measurements.  相似文献   

20.
TiB2/FeMo陶瓷的显微结构与力学性能   总被引:3,自引:0,他引:3  
以Fe-Mo为助烧剂,通过热压制备了TiB2陶瓷.研究了烧结温度、烧结时间对材料显微结构和力学性能的影响,分析了烧结致密化过程.实验结果表明,随着热压烧结温度升高,材料抗弯强度、洛氏硬度出现峰值,热压烧结时间延长,抗弯强度有所下降.液相烧结的重排阶段致密化速率最快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号