首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

2.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

3.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400 ℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

4.
石莼基微/中孔复合结构活性炭的制备及性能   总被引:1,自引:0,他引:1  
以海洋海藻废弃物石莼为原料,通过热解预炭化,KOH活化制备活性炭。以碘吸附值和亚甲基蓝吸附值为吸附性能评价指标,探究了活化工艺对活性炭吸附性能的影响。结果表明,当KOH与石莼半焦质量比(碱炭比)为3.0∶1.0、活化时间为45 min、活化温度为800℃时,活性炭吸附性能最优,其碘吸附值和亚甲基蓝吸附值最大,分别为1824.19 mg/g、914.98 mg/g。FTIR测试表明,活性炭含有大量羟基等官能团。SEM测试表明,活性炭表面粗糙、存在大量孔结构。活性炭的BET比表面积为2616.3 m2/g,Langmuir比表面积高达4883.5 m2/g,平均孔径为2.73 nm。石莼基活性炭的孔结构为微/中孔复合结构,有作为储能、环保材料的潜质。  相似文献   

5.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

6.
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

7.
以生物质炭为原料,采用氯化锌活化制备高比表面积微孔生物质活性炭,研究了浸渍比、活化剂浓度、活化温度与活化时间等条件对生物质活性炭吸附性能的影响,利用氮气吸附脱附、扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对生物质活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明,制备生物质活性炭的适宜工艺条件为:浸渍比为3,活化剂质量分数为40%,活化温度为600℃,活化时间为90min。在该条件下制备的生物质活性炭对亚甲基蓝的吸附值为213mg/g,超过国家水处理用活性炭一级品标准。经测试生物质活性炭的BET比表面积高达631.2m2/g,平均孔径2.23nm,总孔容为0.352cm3/g;孔隙结构发达,孔径分布狭窄,孔形状为排列整齐的蜂窝状结构,含有大量的微孔,84.4%的孔集中在2nm以内;表面存在醇羟基、羰基、醚、酚等含氧官能团。  相似文献   

8.
两步法制备竹质活性炭   总被引:1,自引:0,他引:1  
结合磷酸活化法与氯化锌活化法化制备活性炭,在较低的活化温度下取得了良好的活性炭.活化总时间为60min,磷酸活化温度500 ℃与氯化锌活化温度400 ℃,浸渍率为150%的优化条件下制得的活性炭,其亚甲基蓝脱色力为19 mL,碘吸附值为861 mg/g,孔径集中在4.5 nm,并且比表面积高达1696 m2/g,大孔仅占0.381%.  相似文献   

9.
本文采用高温活化芝麻壳制备活性炭,利用正交实验法,探讨活化剂分别为氢氧化钾与碳酸钾时,活性炭的最佳制备方案。通过扫描电子显微镜观察所制备活性炭的表面形貌,利用热分析仪对活性炭进行热力学分析,采用分光光度计测定所制备活性炭的亚甲基蓝吸附值,并用国标方法测定出碘吸附值。结果表明,以氢氧化钾为活化剂得到的活性炭,其孔洞多为微孔和中孔,亚甲基蓝最大吸附值为327.27mg·g~(-1),碘吸附值为1842.78 mg·g~(-1);以碳酸钾为活化剂得到的活性炭多为大孔,亚甲基蓝最大吸附值为81.08mg·g~(-1),碘吸附值为822.81mg·g~(-1)。  相似文献   

10.
以光合竹为原料,研究了其制备活性炭的工艺条件,考察了活化剂浓度、固液比、活化时间以及活化温度等因素对活性炭碘吸附值、亚甲基蓝吸附值的影响。实验结果表明,用化学法制备光合竹活性炭的最佳工艺参数为:以Zn Cl2为活化剂,Zn Cl2浓度为5 mol/L,活化剂浸渍时间为2 h,固液比为1∶4,活化时间为60 min,活化温度为500℃。在此工艺条件下所制备活性炭得率为48.8%,亚甲基蓝吸附值为197.14 mg/g,碘吸附值为1 034.30 mg/g,样品质量指标接近净化用活性炭标准。  相似文献   

11.
邓锋  解强  刘德钱  万超然  黄小晴  顾雪梅 《化工学报》2019,70(11):4457-4468
将泥炭破碎、粉磨、浸渍磷酸后,压块成型、再破碎,置于管式炉经不同活化温度、活化时间制得活性炭。对浸渍磷酸后的泥炭样品在氮气下进行热重分析;测定活性炭样品的碘吸附值、亚甲蓝吸附值和焦糖脱色率,利用气体吸附仪、激光拉曼光谱、傅里叶变换红外光谱和扫描电子显微镜分别表征其孔结构、碳结构、表面化学和微观形貌。结果表明:泥炭在磷酸活化过程中发生了交联反应,炭化/活化最大失重温度从300℃附近降低至200℃附近;随着磷酸浸渍比和活化温度的升高,活性炭中的无规则石墨层增多、羟基含量减少;磷酸浸渍比增加时,孔隙逐渐发达、吸附性能增强、2~5 nm孔段孔容增大;活化温度升高时,孔隙先收缩(400~550℃)后发生破坏(600℃)、吸附性能下降、2~5 nm孔段孔容减小;随着活化时间延长,活性炭的羟基含量先大幅减小(120~150 min)后无规律变化,孔隙先扩大(120~180 min)后收缩(>180 min),吸附性能>180 min后迅速下降,碳结构和2~5 nm孔段孔容无显著变化。在磷酸浸渍比1.5、活化温度500℃、活化时间180 min条件下,制得活性炭的比表面积为678.52m2·g-1,2~5 nm孔段的孔容达0.1475 cm3·g-1、占总孔容比率为31.04%、占中孔容比率为70.24%。  相似文献   

12.
以稻壳为原料,ZnCl2-CuCl2为复合活化剂,制备稻壳活性炭,并以BET比表面积和吸附性能为指标,通过正交试验对制备的工艺条件进行优化,并对制得的稻壳活性炭采用氮气吸附等温线、X射线衍射仪(XRD)表征。结果表明,稻壳可以被制得大比表面积活性炭。影响活性炭比表面积和吸附性能最重要的因素是氯化锌浓度和活化温度,最佳制备工艺条件是氯化锌浓度5 mol/L,氯化铜浓度 0.4 mol/L,活化温度500 ℃,活化时间2 h。该条件下制得的稻壳活性炭比表面积为1 924 m2/g,碘吸附值为1 041 mg/g,亚甲基蓝吸附值为 188 mg/g。  相似文献   

13.
以碱木质素和杉木屑为原料,磷酸为活化剂,制备碱木质素基成型活性炭,考察了碱木质素质量分数、浸渍比、活化温度、活化时间等对活性炭性能的影响。研究结果表明:碱木质素复配杉木屑(碱木质素质量分数50%)后,复配料的表面润湿性显著提高,瞬时水接触角由133.2°(碱木质素)降低至86.6°(复配料);热膨胀系数显著降低,膨胀温度区间的热膨胀系数由2 365 μm/(m·℃)(碱木质素)降低至45 μm/(m·℃)(复配料)。在最佳工艺条件即碱木质素质量分数50%、浸渍比1.5:1(纯磷酸与复配料质量比)、活化温度500℃、活化时间90 min下,制备的成型活性炭得率41.76%,碘吸附值1 070 mg/g,亚甲基蓝吸附值255 mg/g,强度90%,比表面积1 646 m2/g,总孔容积为0.795 cm3/g,其中孔径小于5 nm的孔容积占总孔容积的97.2%。  相似文献   

14.
以山核桃壳为原料,经磷酸浸渍、炭化和活化后制得活性炭,用SEM和低温氮气吸附仪对活性炭进行表征,并用该活性炭对模拟气化试验产生的煤气洗涤水进行吸附净化,考察活性炭对煤气洗涤水中挥发酚、TOC、COD、氨氮和微量元素的净化效果。实验结果表明:用山核桃壳制备的活性炭具有介孔结构,其孔径主要分布在1~6nm范围内,比表面积达2959m2/g,孔容积为2.223cm3/g;该活性炭对挥发酚具有良好的吸附效果,经45h处理对挥发酚的去除率可达99.75%,TOC和COD的去除率分别到达88.33%和65.73%;对氨氮和微量元素也有很好的净化效果,经15h吸附后氨氮的去除率可达80.71%,微量元素的去除率均达99%以上。  相似文献   

15.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

16.
以沙漠治理树种长柄扁桃的种壳为原料,采用水蒸气活化法制得了介孔发达的活性炭,并研究了炭化温度、活化温度、活化时间、水蒸气用量对活性炭吸附性能及产率的影响。结果表明:在炭化温度600℃、活化温度850℃、活化时间60 min、水蒸气与炭化料的质量比为6:1的最佳工艺条件下,制得活性炭样品的产率为12%,碘吸附值和亚甲基蓝吸附值分别达到1 175和315 mg/g,介孔率为60.9%,比表面积为1 127 m2/g,平均孔径2.6 nm,在吸附平衡时间为24 h时,活性炭对水溶液中头孢氨苄的吸附量高达245 mg/g,优于相同条件下制得的椰壳和核桃壳活性炭的吸附能力。  相似文献   

17.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号