共查询到20条相似文献,搜索用时 15 毫秒
1.
以预合成钛酸铝和煅烧氧化铝为原料,按不同比例混合,湿法共磨至粒径<10 um,干燥后加入PVA溶液结合剂混合,经100 MPa成型后,在1 500℃3 h下烧成,制备出Al2O3-Al2TiO5复相陶瓷材料,并研究了钛酸铝含量对烧后试样显微结构与性能的影响.结果表明:(1)随着复相材料中钛酸铝含量的增加,试样的烧后线变化率、抗折强度与线膨胀率逐渐降低;(2)钛酸铝含量为50%的试样显微结构较为致密,抗折强度为25.2 MPa,室温-1 100℃的平均线膨胀系数仅为3.6×10-6℃-1;(3)其优良的抗热震性能归因于其低热膨胀及晶界应力的共同作用,该复相材料适于用作高温作业领域的抗热震耐火材料. 相似文献
2.
3.
以Al2TiO5微细粉、SiO2-Al2O3微细粉为原料,外加6%(质量分数,下同)PVA结合剂,100 MPa压力成型,1400 ℃保温1 h烧成,制备出低热膨胀系数,抗热震性能优于SiO2-Al2O3材料的Al2TiO5-SiO2-Al2O3复合材料.对复合材料的性能测定分析,研究不同的Al2TiO5含量、烧结温度等对Al2TiO5-SiO2-Al2O3复合材料性能的影响,获得了制备性能优良的Al2TiO5-SiO2-Al2O3复合材料的最佳工艺参数. 相似文献
4.
C.A. Botero E. Jiménez-Piqué C. Baudín N. Salán L. Llanes 《Journal of the European Ceramic Society》2012,32(14):3723-3731
The mechanical properties of alumina/aluminum titanate composites (Al2O3/Al2TiO5) were evaluated and analyzed by nanoindentation. Indentations with different penetration depths were performed, and residual imprints on specimens were located and observed by combining complementary characterization techniques. The mechanical response of composites was found to be determined by grain size of alumina and aluminum titanate, as evaluated from indentations performed at 1500 nm of penetration depth. On the other hand, small indents in individual grains permitted to assess the hardness as well as the elastic modulus of non-cracked particles of Al2TiO5 through implementation of different analytical indentation models. The attained values for the local mechanical properties were validated through critical comparison of them with those predicted by the rule of mixtures. Results showed no evidence of microcracking on grains of the reinforcing phase for all the tested composites, before and after low penetration depth indentations. Elastic modulus of Al2TiO5 was found to be higher than the values reported on bulk aluminum titanate, presumably because of the absence of microcracking for small grain sizes. The bulk composite mechanical response is finally discussed on the basis of contributions from those of the individual phases. 相似文献
5.
6.
《Ceramics International》2021,47(21):29881-29887
Alumina and zirconia toughened alumina foams were fabricated through a thermo-foaming method using varying amounts of powder to sucrose weight ratio. All the fabricated foams were characterized for their compressive strength, bending strength, and fracture toughness under static loading conditions. The compressive strength increases with an increase in a weight ratio from 0.4 to 1.2. The maximum compressive strength values were found to be 1.9 MPa, and 1.8 MPa for alumina and zirconia toughened alumina foams, respectively. Further increase in powder to sucrose weight ratio led to a decrease in the compressive strength due to the partial collapse of the cell walls during the foaming process. The 3-point bend test results revealed an improvement of bending strength and fracture toughness values of zirconia toughened alumina foams compared to alumina foam, which can be attributed to the transformation toughening mechanism. 相似文献
7.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack. 相似文献
8.
Guojun Zheng Jianhong Wu Zhousu Xu Zaijin Fang Xiaofeng Liu Jianrong Qiu 《Journal of the American Ceramic Society》2021,104(7):3139-3148
Transparent polycrystalline ceramics (TPCs) are crystalline materials with single-crystal-like transparency, which, however, have to rely on fabrication processes with a relatively high cost. Here, we produced lab-scale TPCs based on the typical refractory Y2O3-Al2O3 system, through full congruent crystallization of the parent glass prepared by aerodynamic levitation melting method. Doping of the glass and TPCs by rare-earth (RE) ions (Ce3+, Tb3+, Nd3+, and Yb3+) and transition-metal (TM) ions (Cr3+) results in strong visible and near-infrared (NIR) photoluminescence with high quantum yield. The dominance of Stark splitting of the emission band for RE and TM ions in the TPCs as compared with that of the glass confirms crystallization of the parent glasses. 相似文献
9.
《Journal of the European Ceramic Society》2014,34(12):3051-3059
Al2O3/Y3Al5O12/ZrO2 directionally solidified ceramic has been considered as a promising candidate for ultrahigh temperature structural materials due to its excellent performance even close to its melting point. In this work, laser floating zone (LFZ) solidification experiments were performed on Al2O3/Y3Al5O12/ZrO2 hypereutectic with the solidification rates between 2 μm/s and 30 μm/s. The full eutectic lamellar microstructure is obtained with hypereutectic composition. The solid/liquid interface morphology is investigated. The microstructure characteristic is discussed based on the solid/liquid interface. The variation of lamellar spacing with different compositions and solidification rates was reported and discussed by considering an irregular eutectic growth model. The maximum hardness and fracture toughness are 19.06 GPa and 3.8 MPa m1/2, respectively. The toughening mechanism of ZrO2 is discussed based on the scenario of the crack propagation pattern. 相似文献
10.
Xuchao Wang Jun Zhao Enzhao Cui Shiping Song Hao Liu Weitian Song 《Ceramics International》2019,45(8):10321-10329
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values. 相似文献
11.
T. F. Baranova 《Refractories and Industrial Ceramics》1986,27(7-8):449-450
Conclusions We studied the effect of addtions of amorphous silica in amounts of 6–11% on the properties of compositions in the Al2O3-Al2TiO5 system.The presence of SiO2 enables us to obtain, at reduced firing temperatures (1580°C), adequately dense (Popen=3–4%) compositions while preserving the high thermal-shock resistance and compressive strength at 1050°C (360–420 MPa).Translated from Ogneupory, No. 8, pp. 19–20, August, 1986. 相似文献
12.
13.
Shoulei Yang Yinxiao Zhu Lei Fan Sirui Yang Mengwen Zhang Linan An 《Ceramics International》2021,47(15):21231-21235
SiCw-Al2O3-YAG ceramic composites were prepared by hot oscillatory pressing (HOP) and traditional hot pressing (HP). The results showed that compared with static pressure, the oscillatory pressure could effectively promote densi?cation and mechanical properties of the composites. The sample prepared by HOP exhibited higher hardness (15.72 ± 0.20 GPa) and fracture toughness (7.13 ± 0.19 MPa m1/2). The current work suggests that HOP could be an effective technique for the preparation of whisker reinforced ceramic composites. 相似文献
14.
采用微波加热的方法,以硝酸铝、正硅酸乙酯、氧氯化锆、钛酸丁酯为原料,制备复合溶胶;并在氧化铝基陶瓷管上成功制备了Al2O3-SiO2-ZrO2-TiO2复合膜.应用扫描电子显微镜(SEM)、X射线衍射(XRD)、差热分析(DTA)等手段对复合膜的物相组成、表面形貌和孔径进行了分析.结果表明:采用微波加热法更易获得粒径小、分布集中的复合溶胶;微波干燥可以大大缩短干燥时间;制备的复合陶瓷膜完整,内部无明显宏观缺陷. 相似文献
15.
《Journal of the European Ceramic Society》2020,40(15):5819-5828
In this paper, a novel Dy2O3-Al2O3-SiO2 (DAS) glass ceramic was designed and prepared for joining zirconia toughened alumina (ZTA) ceramic. The crystallization, thermal expansion behavior and wetting behavior of the DAS glass filler were studied. The effect of cooling rate and joining temperature on the microstructure and flexural strength of joints was investigated. The results show that slow cooling rate (15 °C/min) leads to crystallization of brazing seam, which causes the formation of pores in the joints due to the large density difference between the glass and the crystalline phases. The dissolution of ZrO2 from ZTA substrate into the filler during joining process improves the mismatch of the coefficient of thermal expansion (CTE) between the brazing seam and substrate. The maximum flexural strength of 535 MPa is obtained when the joining temperature and cooling rate are 1475 °C and 50 °C/min, respectively. 相似文献
16.
采用二乙三胺五乙酸(DTPA)为配合剂,以简易的液相法合成出微纳米纤维状Al和Al-Zr前体,煅烧处理制备了棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。同时研究了DPTA∶Al3+质量比、反应温度与时间对陶瓷粉体形态的影响。利用X射线衍射(XRD)、热分析(TG/DSC)以及扫描电子显微镜(SEM)对粉体进行了表征。结果表明:较高的DTPA∶Al3+质量比以及较长的反应时间有利于制备高长径比的纤维棒状Al和Al-Zr配合物前体。合成纳米纤维状α-Al2O3和Al2O3-ZrO2前体的最优条件是反应温度60℃,反应时间5.5h,DTPA∶Al3+比例为1.2∶1。相应地,该前体煅烧后可以制备出棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。 相似文献
17.
Zhe Chen Wen Yan Stefan Schafföner Yawei Li Mithun Nath Chengyi Zhu 《International Journal of Applied Ceramic Technology》2022,19(3):1613-1625
We prepared a new lightweight Al2O3-C refractory material with a higher strength by using microporous corundum aggregates instead of dense tabular corundum aggregates, which was reinforced by in situ formed SiC whiskers, multi-walled carbon nanotubes (MWCNTs), and mullite rods. A comparative study of the microstructure, mechanical properties, and fracture behavior was carried out for dense and lightweight Al2O3-C refractories coked at 1200°C and 1400°C, respectively. By using the microporous corundum aggregates, a better aggregate/matrix interface bonding and an optimized distribution of SiC whiskers were obtained. The SiC whiskers formed inside the microporous corundum aggregates and simultaneously in the matrix by a vapor-solid reaction mechanism, resulting in an enhancement at the microporous aggregate/matrix interface. Furthermore, the in situ formed MWCNTs and well-developed mullite rods at 1200°C in the matrix also contributed to the better interface structure. Thus, due to the improved microporous aggregate/matrix interface, the crack propagation along the aggregate/matrix interface was suppressed, resulting in an increased crack propagation within the aggregates. Consequently, the synergy between microporous corundum aggregates and combined one-dimensional ceramic phases caused a lower bulk density but a markedly higher strength, a higher fracture energy, and a higher toughness of lightweight Al2O3-C refractories compared to the dense ones. Overall, our study allows to overcome the traditional concept that a higher strength of refractories is reached by a higher density. 相似文献
18.
19.
《Journal of the European Ceramic Society》2022,42(6):2892-2904
Graphene nanoplatelets (GNPs) as reinforcement in the ceramic matrix is rising continuously due to their outstanding mechanical and lubricative properties. Herein, different compositions of GNPs (0.5–2 wt%) reinforced alumina-titania coatings were prepared using atmospheric plasma spraying. The relative density of AT coating increased from 83% to 94% with just (1.5 wt%) addition of GNP. Consequently, mechanical properties i.e. hardness and elastic modulus were improved by ~77% and ~69% respectively. Fracture toughness also increased from 2.65 ± 0.95 MPa.m1/2 to 5.85 ± 1.07 MPa.m1/2. Furthermore, the seawater wear test, using a ball-on-disc tribometer revealed that the wear rate of AT coating decreased from ~11 × 10?14 m3/Nm to ~4 × 10?14 m3/Nm, whereas the coefficient of friction reduced from 0.33 ± 0.05–0.16 ± 0.03. The mechanisms involved to improve these properties, viz. GNP sandwiching, crack bridging, crack arrest, etc. GNP’s multi-layers facilitated long-term lubricity and enhanced the wear resistance properties of the coatings. 相似文献
20.
《Journal of the European Ceramic Society》2020,40(6):2260-2267
Hexagonal boron nitride (h-BN) composite ceramics were fabricated by hot pressing using h-BN, La2O3, Al2O3 and amorphous SiO2 as the raw materials. The effects of La2O3-Al2O3-SiO2 addition on the bulk density, apparent porosity, microstructural evolution and room/elevated-temperature mechanical properties of h-BN composite ceramics were investigated. The results indicated that liquid phase generated by the reaction of La2O3-Al2O3 and SiO2 exhibited a good wettability with h-BN grains, contributing to fill the pores and improve the densification. Therefore, h-BN composite ceramics with synchronous introduction of La2O3-Al2O3 and SiO2 show the better mechanical properties compared with separate addition of La2O3-Al2O3 or SiO2. h-BN composite ceramic incorporated with 10 vol.% La2O3-Al2O3 and 20 vol.% SiO2 shows the highest room-temperature strength of 266.4 MPa and elevated-temperature strength of 389.0 MPa at 800 °C. 相似文献