首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Abstract

The influences of rare earth neodymium on microstructure and mechanical properties of as cast and hot rolled AZ31B wrought magnesium alloy were investigated. The results show that the mechanical properties of both as cast and hot rolled AZ31B alloys decrease due to Nd addition. Nd reacts with Al to form Al2Nd phase when Nd is added. Bulky and brittle Al2Nd intermetallic degrades the mechanical properties. Moreover, the addition of Nd weakens the grain refining effect of Al on as cast AZ31B alloy, resulting in grain coarsening. Coarse grains also cause the decline of the mechanical properties of as cast AZ31B–Nd alloy. The negative influence of the bulky and brittle intermetallics on mechanical properties of AZ31B alloy can be relieved by large deformation because the intermetallics can be sufficiently broken up during the deformation process.  相似文献   

2.
Abstract

The Mg–2·5Nd–0·3Zn–0·1Sr–0·4Zr (wt-%) alloy was prepared by gravity casting. Solution treatment and extrusion were conducted. The microstructure, mechanical properties, and corrosion behaviour of the alloy under as cast, T4-treated, and as extruded conditions were evaluated using scanning electron microscope, tensile test, microhardometre, immersion test, and electrochemical test. The results show that the as extruded alloy exhibits the highest ultimate tensile strength (231 MPa), elongation (36·6%), and microhardness (57·8 HV). The as cast alloy shows the best corrosion resistance because the relative continuously distributed eutectic phase with noble corrosion potential acts as a corrosion barrier. The as extruded Mg–Nd–Zn–Sr–Zr alloy with high ductility and good corrosion resistance is desirable for preparing biodegradable implants.  相似文献   

3.
Abstract

Two kinds of ternary Mg based alloys were designed to join the AZ31B magnesium alloy plates by high frequency induction soldering with argon shielding gas. The microstructures and properties of the filler metals and joints were investigated by SEM, X-ray diffraction, differential scanning calorimetry, spreading test and tensile test. The results have shown that the microstructures of Mg–31·5Al–10Sn filler metal mainly consist of Mg17Al12, Mg2Sn and a trace amount of α-Mg phases, while the microstructures of Mg–29·5Zn–1Sn filler metal include α-Mg phase and Mg7Zn3 with a trace of α-Mg and Mg2Sn phases. Both of the filler metals have narrow melting zones; however, the spreading area of the Mg–31·5Al–10Sn filler metal is much larger than that of the Mg–29·5Zn–1Sn filler metal on the AZ31B base metal. The average tensile strength of solder joints with Mg–31·5Al–10Sn filler metal is a little higher than that of the latter solder joints with Mg–29·5Zn–1Sn filler metal.  相似文献   

4.
Mg–8Gd–0.6Zr–xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg–8Gd–0.6Zr–3Nd alloy is 103, it is about 1.3 times more than that of the Mg–8Gd–0.6Zr alloy. The aged Mg–8Gd–0.6Zr–3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 °C, respectively. Which are about 2 times higher than those of Mg–8Gd–0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness of Mg5RE and Mg12RE precipitates in the alloy.  相似文献   

5.
Abstract

Based on the infrared thermography method, experiments are carried out to investigate the evolution of temperature field of the extruded AZ31B magnesium alloy specimens under high cyclic fatigue load. The experimental results show that the superficial temperature of specimen under cyclic fatigue load changes with the number of cycles. According to the characteristics of surface temperature change, we propose a formula to calculate the residual fatigue life using energy approach. The proposed formula to assess the fatigue parameters (fatigue limit, residual fatigue life, fatigue life and S–N curve) achieves good results for AZ31B magnesium alloy. Furthermore, the fatigue limits (ΔσeSN?=?90·3 MPa) derived from the traditional method through 107 cycles were compared with the values predicted by the infrared thermographic method (ΔσeTM?=?87·3 MPa) and the energy approach (Δσ?=?86·2 MPa), and the comparison results of percentage differences are 3·3 and 4·5% respectively.  相似文献   

6.
In this paper, 1.5 wt%Sn was added to the AZ31 magnesium alloy aiming at improving the mechanical properties by using a low cost alloying element. Both alloys were prepared in the cast/heat treated (HT), rolled at 350 °C, rolled/heat treated at 400 °C and extruded at 350 °C. The results indicate that with addition of tin an improvement was obtained in both tensile strength and ductility of the AZ31 alloy in the cast/heat treated and in the extruded conditions. The yield and ultimate tensile strengths reached 98 MPa and 224 MPa respectively with 14 % elongation in the cast/heat treated condition while in the extruded condition these values were 212 MPa and 286 MPa with 20 % elongation. The tensile strength was even higher after rolling reaching 315 MPa for AZ31 with tin addition; however, as the material temperature during the last passes has decreased to relatively low values, the % elongation decreased to 1 %. After heat treatment at 400 °C for 2 hours the % elongation was restored and reached 12 %; this was accompanied by a decrease in tensile strength which reached 276 MPa. The results are discussed in relation to the microstructure evolution including grain size, phase identification, and volume fraction of phases.  相似文献   

7.
Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al4Sr and massive Al3Mg13Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions.  相似文献   

8.
A new cast Mg–2 Gd–2 Nd–2 Y–1 Ho–1 Er–0.5 Zn–0.4 Zr(wt%) alloy was prepared by direct-chill semicontinuous casting technology. The microstructure, mechanical properties and thermal conductivity of the alloy in as-cast, solid-solution treated and especially peak-aged conditions were investigated. The as-cast alloy mainly consists of β-Mg matrix,(Mg, Zn)_3 RE phase and basal plane stacking faults. After proper solid-solution treatment, the microstructure becomes almost Mg-based single phase solid solution except just very few RE-riched particles. The as-cast and solid-solution treated alloys exhibit moderate tensile properties and thermal conductivity. It is noteworthy that the Mg alloy with 8 wt% multiple RE exhibits remarkable age-hardening response( HV = 35.7), which demonstrates that the multiple RE(RE = Gd, Nd, Y, Ho, Er) alloying instead of single Gd can effectively improve the age-hardening response.The peak-aged alloy has a relatively good combination of high strength/hardness(UTS(ultimate tensile strength) 300 MPa; TYS(tensile yield strength) 210 MPa; 115.3 HV), proper ductility(ε≈ 6%) and moderate thermal conductivity(52.5 W/(m K)). The relative mechanisms mainly involving aging precipitation of β¢ and β' phases were discussed. The results provide a basis for development of high performance cast Mg alloys.  相似文献   

9.
Abstract

The effects of minor additions of Ce and Y on the as cast microstructure of Mg–3Sn–2Ca (wt-%) magnesium alloy are investigated and compared. Results indicate that adding minor Ce or Y to Mg–3Sn–2Ca alloy does not cause formation of any new phases in the alloy. The as cast Mg–3Sn–2Ca alloy with addition of 0·5 wt-%Ce or Y is still composed of α-Mg, CaMgSn and Mg2Ca phases. However, after adding 0·5 wt-%Ce or Y to Mg–3Sn–2Ca alloy, not only the formation of CaMgSn phase in the alloy is suppressed but also the CaMgSn phases in the alloy are effectively refined. In addition, adding 0·5 wt-%Ce to Mg–3Sn–2Ca alloy exhibits higher refinement efficiency to the CaMgSn phase in the alloy than adding 0·5 wt-%Y. Further investigations need to be considered in order to understand the difference of minor Ce and Y with regard to the refinement of CaMgSn phase in the Mg–3Sn–2Ca alloy.  相似文献   

10.
The Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr (wt.%) alloy sheet was prepared by hot extrusion technique, and the structure and mechanical properties of the extruded alloy were investigated. The results show that the alloy in different states is mainly composed of α-Mg solid solution and secondary phases of Mg5RE and Mg24RE5 (RE = Gd, Y and Nd). At aging temperatures from 200 °C to 300 °C the alloy exhibits obvious age-hardening response. Great improvement of mechanical properties is observed in the peak-aged state alloy (aged at 200 °C for 60 h), the ultimate tensile strength (σb), tensile yield strength (σ0.2) and elongation () are 376 MPa, 270 MPa and 14.2% at room temperature (RT), and 206 MPa, 153 MPa and 25.4% at 300 °C, respectively, the alloy exhibits high thermal stability.  相似文献   

11.
Book review     
Abstract

Magnesium based Mg–9Al–1Zn–5RE (RE=Y, La, Nd, Ce, or Pr) alloys with or without an addition of 1%Si were rapidly solidified by chill block melt spinning and splat quenching. The base alloy AZ91 (Mg–9Al–1Zn) was also rapidly solidified. Isochronal heat treatment for 1 h at 100–400°C showed that the microhardness of the ribbon maintained a similar level to that of the as spun alloy up to 300°C but decreased when heat treated at 400°C. Isothermal heat treatment for up to 24 h at 250–350°C showed that there were aging responses for the sample treated at 250°C while above this temperature, the microhardness decreased as the treatment time increased. The addition of 5% of RE elements to AZ91 displaced the Mg17Al12 phase in AZ91 with fine dispersoids of Al2RE (RE=Y or Nd) or Al11RE3 (RE=La, Nd, Ce, or Pr) in Mg–9Al–1Zn–5RE alloys. These Al–RE intermetallics remained fine and precipitated at the grain boundaries so restraining grain growth during heat treatment at up to 400°C. Although Mg2Si precipitates were found to be present in the silicon containing alloys after heat treatment at 400°C, their size was greater than those of Al–RE intermetallics, indicating that Mg2Si has a lower thermal stability than these Al–RE intermetallics. The relationship between microhardness and grain size is discussed.

MST/3400  相似文献   

12.
Abstract

The present paper reports the investigation of the microstructure distribution of squeeze cast AZ91D alloy. The microstructure of squeeze cast AZ91D alloy is not uniform and is composed of four zones, which are chilled layer, segregation zone, pressured crystallisation area and hot spot area respectively. Moreover, in the pressured crystallisation area, the microstructure sequence in the transverse section from the outside to the inside could be divided into four sublayers, such as fine equiaxial dendrite area, dendrite area with a high directivity, confusion dendrite area and disorder dendrite area. The volume fraction of the intermetallic compound Mg17Al12 also varied with the location. The volume fraction of Mg17Al12 in the pressured crystallisation area is the largest except in the segregated zone.  相似文献   

13.
Abstract

The microstructure and mechanical properties of dissimilar AZ based magnesium alloys subjected to laser–tungsten inert gas (TIG) hybrid welding have been investigated. The results show that magnesium alloys can be readily welded as dissimilar joints using this process. The microstructure of the dissimilar magnesium alloy joints is composed of primary α phase (Mg) and β phase (Mg17Al12), based on electron probe microanalysis (EPMA) and X-ray diffraction (XRD) data. In addition, the tensile strength of AZ31B–AZ61 and –AZ91 joints is equal to that of AZ31B base metal. It has also been found that the presence of β phase has a severe influence on the tensile strength and mirohardness of dissimilar magnesium alloy joints.  相似文献   

14.
The effect of simultaneous alloying with Ca and rare earth (RE) elements on the age hardening kinetics of AZ91 was studied through the fitting of the Johnson-Mehl-Avrami (JMA) equation. The results showed that the addition of both Ca and RE elements not only suppress discontinuous precipitation of the Mg17Al12 phase during the age hardening process, but also decrease the alloy hardness. Fitting the JMA equation to the experimental data indicated that the phase transformation during age hardening of an alloy variant containing both Ca and RE (at 170 °C and 190 °C) and standard AZ91 (at 170 °C) takes place by the nucleation of precipitates on dislocations. In contrast, the precipitation during age hardening of AZ91 at 190 °C occurs via nucleation at grain boundaries. Although it was observed that the creep strength of age hardened specimens are lower than that of the as cast specimens, but age hardening treatment has lower deleterious influence on the creep resistance of the alloy containing Ca and RE in comparison with conventional AZ91. This may be ascribed to the decreased precipitation rate resulting from the addition of both Ca and RE elements.  相似文献   

15.
The effect of 0–2?wt-% Sn addition on AZ80 magnesium alloys after 350°C extrusion has been studied by analysing microstructure and mechanical properties. The results indicated that dynamically recrystallised grains were fine and homogeneous with less than 1?wt-% Sn addition. In AZ80–0.5Sn alloy, a large number of Mg17Al12 precipitated phases formed in grains and at grain boundaries during extrusion process. With more than 1?wt-% Sn addition, the size of dynamically recrystallised grains increased and the number of Mg17Al12 phases decreased. The strength of as-extruded AZ80–0.5Sn alloy enhanced largely as compared with that of the as-extruded AZ80 alloy. AZ80–0.5Sn alloy had the outstanding tensile and compressive properties.  相似文献   

16.
Abstract

Direct chill (DC) semicontinuous casting process has been successfully used to produce sound Mg–3·0Nd–0·4Zn–0·4Zr (NZ30K) billets. The influence of process parameters such as casting speed, casting temperature on the microstructure and macrosegregation was studied. The results show that the casting speed affects the macrosegregation greatly while it has a slight influence on the grain size of the billet; the casting temperature has a slight influence on macrosegregation of the billet while the grain size of the billet increases as the casting temperature increases. The optimal process parameters have been experimentally determined as follows: casting temperature 700°C and casting speed 90 mm min?1. The ultimate tensile strength, yield strength and elongation of billets cast at the optimal casting parameters are 196 MPa, 125 MPa and 16·5% respectively.  相似文献   

17.
The main aim of this study was to simultaneously increase tensile strength and ductility of AZ31/AZ91 hybrid magnesium alloy with Si3N4 nanoparticles. AZ31/AZ91 hybrid alloy nanocomposite containing Si3N4 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable Si3N4 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction, and 13% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy (in tension), the nanocomposite simultaneously exhibited higher yield strength, ultimate strength, failure strain and work of fracture (+12%, +5%, +64% and +71%, respectively). Compared to the monolithic hybrid alloy (in compression), the nanocomposite exhibited higher yield strength and ultimate strength, lower failure strain and higher work of fracture (+35%, +4%, −6% and +6%, respectively). The beneficial effects of Si3N4 nanoparticle addition on the enhancement of tensile and compressive properties of AZ31/AZ91 hybrid alloy are investigated in this paper.  相似文献   

18.
ABSTRACT

In-situ magnesium matrix nano-composites were produced through a reaction of CO2 with the AZ91 alloy at a semi-solid temperature range. The process was performed at 595°C, which corresponded to about 10% of solid fraction, under shear and mixing conditions generated by a screw-barrel system. As a result, nano-scale native MgO (30–50?nm) and a small amount of Al4C3 carbide within an eutectic consisting of α(Mg), β-Mg17Al12 were formed. Homogeneously distributed α(Mg) globular grains with volume 8–12% were visible. AZ91 composites revealed yield strength of 220?MPa at compression strength of 460?MPa and hardness 103?±?2?HV.  相似文献   

19.
Abstract

In the present work, the developed nanoscale precipitates in Al–0·73Mg–0·45Si–0·34Cu–0·21Cr–0·20Fe (wt-%) alloy have been investigated by means of differential scanning calorimetry, electron microscopy (SEM and TEM) and microhardness measurements (HV). The addition of Cu assists the formation of Q′ phase which positively changes the alloy strength. The precipitation of β′′ nanoparticles is followed by the precipitation of β′ and/or Q′ precipitates. Both coherent and semicoherent precipitates have a positive contribution to the strengthening of the alloy. The average activation energy associated with the precipitation of β(Mg2Si)+Q phases is very close to that for Q″ and/or Q′ phase which suggests that the two phase precipitation might be characterised by the same mechanism. The reaction order of the precipitation processes suggests that β′ and/or Q′ precipitates grow radially; whereas, β-precipitates grow in the three directions.  相似文献   

20.
The effect of 1 wt.% La- and Ce-rich rare earth (RE) additions on the microstructure, creep resistance, and high temperature mechanical properties of the Mg-6Zn-3Cu alloy (ZC63) was investigated by impression creep and shear punch tests (SPT). Impression creep tests were performed in the temperature range 423-498 K and under punching stress in the range 150-700 MPa for dwell times up to 3600 s. The ultimate shear strength (USS) was measured by the SPT in the temperature range 298-498 K. The results showed that Ce-rich RE was more effective than the La-rich RE in refining the as-cast microstructure, increasing the number density of eutectic phases at grain boundaries, and producing thermally stable Mg12RE and MgRE compounds. The creep strength of the base alloy was remarkably improved by addition of both types of RE elements, although the Ce-rich RE-containing alloy showed better creep resistance. The addition of La-rich RE increased the shear strength of the base alloy, whereas Ce-rich RE addition had detrimental effects on the shear strength. This was attributed to the formation of a grain boundary network of Mg(Zn,Cu) Laves phases in Ce-rich RE-containing alloy. This grain boundary network with a bulky morphology promoted the initiation and propagation of cracks, leading to an adverse effect on the strength. This was in contrast with its positive influence on inhibiting grain boundary sliding and migration, which enhanced the creep strength of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号