首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Segregation of phosphorus and molybdenum to grain boundaries in a commercial grade Ni-base (718 plus) superalloy subjected to different heat treatments has been examined using a field emission gun scanning transmission electron microscope with energy dispersive X-ray microanalysis. The results indicate that P and Mo concentrations at grain boundaries increase in linear manner with the square root of aging time.  相似文献   

2.
Abstract

The grain microstructure evolution in the course of two dimensional (2D) grain growth is considered in greater detail, taking into account the influence of grain boundary triple junctions. It is shown that there are two limiting regimes of grain growth in polycrystals: the first one is associated with the situation when the kinetics of grain growth are controlled by the motion of grain boundaries, while the second one is defined by the motion of grain boundary triple junctions, i.e. when the mobility of triple junctions determines the kinetics of grain growth. A generalised theory of 2D grain growth including a limited triple junction mobility is presented. The theoretical predictions are compared with results of computer simulations by a virtual vertex model. We introduce a new branch of grain boundary engineering, namely, grain boundary junction engineering that utilises junction properties for microstructure control.  相似文献   

3.
Abstract

The present paper reports the application of a five parameter determination of grain boundary types to grain boundary engineered α brass. Approximately 20 000 grains constituted the total sample population, giving rise to more than 77 000 grain boundary line segments. This is the first time that the orientation of a large sample population of grain boundary planes has been measured in a grain boundary engineered material. The most important findings of the investigation were that the distribution of planes showed a prevalence of 〈 110 〉 tilt boundaries, especially asymmetric tilt types, and the presence of 〈 111 〉 twist boundaries. This distribution is a consequence of the low energy of these boundary types. Furthermore, more than three-quarters of boundaries could be considered to be 'potentially special'. The presence of these boundaries greatly fragmented the grain boundary network. This fragmentation is probably a key factor in the development of superior properties in a grain boundary engineered material.  相似文献   

4.
Abstract

Type 316 stainless steel weld metal with 0·07%N, prepared using nitrogen bearing 316 stainless steel filler wire by the manual metal arc (MMA) welding process, was evaluated for the microstructural changes and pitting corrosion resistance in as welded and aged (at both 1023 and 1123 K for 0·5, 1, 10, and 100 h) conditions. The initial delta ferrite content was about 5·5 ferrite number, which transformed from 70 to 100% as secondary precipitates depending on the aging conditions. Electrochemical potentiokinetic reactivation studies did not show any reactivation peak indicating the absence of Cr depleted zones. Pitting corrosion studies in a medium of 0·5M NaCl + 0·5M H2 SO4 (acidic chloride) by the potentiodynamic anodic polarisation method showed a significant variation in the pitting resistance which depended on the aging conditions. The pitting corrosion resistance has been correlated to the precipitation kinetics of the secondary phases such as sigma, carbide, and Cr2 N in the weld metal.  相似文献   

5.
Abstract

Phosphorus and molybdenum segregation to grain boundaries in a commercial grade A533B steel subjected to a variety of heat treatments has been examined using a field emission gun scanning transmission electron microscope (FEGSTEM) with energy dispersive X-ray micro-analysis. The results indicate that P and Mo concentrations at prior austenite grain boundaries increase with aging time. This follows the prediction of McLean's equilibrium segregation model, when modified to take account of the interaction energy between phosphorus and molybdenum.  相似文献   

6.
Abstract

Misorientation, grain growth and brittle fracture were investigated in two iron - carbon alloys containing 0.06 wt-% phosphorus (0.06P) and 0.12 wt-% phosphorus (0.12P) after selected heat treatment schedules. A 'fracture surface serial sectioning' technique was devised and combined with misorientation measurements to reconstruct specimens after fracture. Anomalous grain growth occurred in the 0.06P specimen only, after 1000°C annealing. This was attributed to the inhomogeneous distribution of phosphorus at the interfaces. No evidence was found for the direct influence of misorientation angle distributions or coincidence site lattice distributions on anomalous grain growth. The proportion of Σ3s increased greatly after annealing at 1000°C, attributed to the twinning that developed in the austenite range. There was strong evidence that Σ3s were in general more resistant to brittle fracture than were random boundaries. It is suggested that alloys of this type could be 'grain boundary engineered' to improve fracture resistance.  相似文献   

7.
Abstract

The theory of grain boundary diffusion controlled rotation of an orthogonal bicrystal about its common boundary has been extended to the case of cylindrical geometry. The analysis for this simple 'bamboo' geometry enables predictions to be made with a higher level of certainty than is usual for other diffusion controlled processes. Since bamboo structures are easy to fabricate, this suggests an indirect method of estimating boundary diffusion coefficients based on experimental measurement of rotation rates. A numerical analysis is presented and the dependence of the rotation rate on bending moment and wire radius is determined. The variation of the local stress and diffusion fluxes over the boundary is calculated. The conditions where experimental measurements are likely to provide a viable method of estimating grain boundary diffusion coefficients are predicted.  相似文献   

8.
Abstract

There is clear evidence that creep damage in power plant steels is associated with grain boundary precipitates. These particles provide favourable nucleation sites for creep damage such as grain boundary cavities and microcracks. Monte Carlo based grain boundary precipitation kinetics is combined with continuum creep damage mechanics (CDM) to model both the microstructural evolution and creep behaviour in power plant metals. It is found that grain boundary precipitates, such as M23C6 in most Cr containing ferritic steels, are harmful to the creep properties of the material, in line with experimental observations. It is also found that to improve the creep behaviour of the material, means should be found either to increase the proportion of MX type particles, such as VN, or to decrease or remove the larger grain boundary precipitates, such as M23C6. Hafnium has been ion implanted into thin foils of a 9 wt-%Cr ferritic steel to study the effect of hafnium on the grain boundary precipitation kinetics. It is found that the implantation of hafnium to the steel completely prohibits the formation of the common grain boundary M23C6 particles. Instead, two new types of precipitates are formed. One is hafnium carbide, which is an MX type precipitate, and is very small in size and has a much higher volume fraction as compared with the volume fraction of VN in conventional power plant ferritic steels. The other is Cr- and V-rich nitride of formula M2N. CDM modelling shows that implantation of hafnium can markedly improve the creep property of the material. In addition, the replacement of M23C6 with hafnium carbide increases the concentration of Cr in the matrix and is expected to improve the intergranular corrosion resistance of the material.  相似文献   

9.
Abstract

In batch annealing and continuous annealing processes, both recrystallisation and grain boundary segregation can occur. In this paper, a simple model is derived which explores the interaction of the boundary migration and segregation processes and considers the application to phosphorus segregation during the annealing of interstitial free steels. The model considers both segregation to a migrating boundary and the segregation which occurs during continuous cooling after the holding period during the anneal cycle.  相似文献   

10.
11.
Abstract

A relationship between ferrite grain size, cooling rate from austenitising temperature, austenitising time, and austenitising temperature is developed to predict the ferrite grain size of a low carbon steel. The coefficients of that relationship are determined experimentally. A Hall - Petch relationship is used to predict the yield stress and fracture stress from the predicted ferrite grain size. Considering the experimental results, maximum errors of 12.5% and 6.5% were found in the prediction of ferrite grain size and strengths, respectively.  相似文献   

12.
Abstract

Stress relief cracking can occur in weld heat affected zones (HAZ) after post-weld heat treatment (PWHT) and periods of service at elevated temperatures. Stress relief cracking is generally believed to occur by sulphur induced decohesion ahead of a growing sharp crack. The impurity segregation behaviour in a microalloyed steel, typical of that used in the construction of a power station boiler where intermittent cracks were observed along the weld fusion boundaries, has been assessed. In particular the type and amount of segregation in the coarse grained HAZ (CGHAZ) before and after PWHT has been determined. It was found that significant sulphur segregation occurred during the CGHAZ thermal cycle resulting in elemental sulphur on the prior austenite grain boundaries. Following PWHT some desegregation of sulphur, coupled with the formation of sulphides and carbides on the prior austenite grain boundaries, was observed; in addition, significant phosphorus segregation to the prior austenite grain boundaries and grain boundary precipitate/matrix interfaces was seen.  相似文献   

13.
Abstract

Polycrystalline nickel based superalloys are prone to grain boundary attack by atmospheric oxygen either in the form of time dependent intergranular cracking during dwell time within a low cycle fatigue loading spectrum, known as hold time cracking, or in the form of intercrystalline oxidation at higher temperatures. In the case of hold time cracking of IN718 it has been shown that the crack propagation velocity is determined by local microstructure and environmental conditions, reaching values up to 10 μm s?1 under four-point bending conditions at 650°C in air. The governing mechanism for this kind of time dependent quasi-brittle intergranular failure has been recognised to be 'dynamic embrittlement', i.e. diffusion of the embrittling element into the elastic stress field ahead of the crack tip, followed by stepwise decohesion. In a very similar way to intercrystalline oxidation, this damage mechanism seems to depend on the local microstructure. Assuming that oxygen grain boundary diffusivity is particularly slow for special coincident site lattice (CSL) grain boundaries, bending and oxidation experiments were carried out using specimens that underwent successive steps of deformation and annealling, i.e. grain boundary engineering. It has been shown that an increase in the fraction of special CSL grain boundaries yields a higher resistance to both intercrystalline oxidation and hold time cracking by dynamic embrittlement.  相似文献   

14.
Abstract

A mathematical model is developed to assess the solidification behaviour of the weld pools. To do so, during gas tungsten arc welding of commercial pure aluminium, equations of conversation of mass, energy and momentum are numerically solved considering three-dimensional steady state heat transfer and fluid flow conditions. The weld pool geometry, weld thermal cycles and various solidification parameters are calculated using temperature and velocity fields acquiring from the utilised model. The solidification behaviour of the weld pool at the weld centreline and the fusion line is then studied using the solidification parameters including temperature gradient G, solidification rate R and the combined forms G/R and GR. In order to verify the predictions, welding experiments are performed and geometry of the weld fusion zone is measured. The calculated geometry of the weld fusion zone is found to be in good agreement with the corresponding experimental result. The predictions show that the cooling rate GR increases toward the centreline while the other solidification parameter G/R shows a different behaviour. In addition, it is found that under the employed welding conditions, as the welding speed increases temperature gradients both at the weld centreline and at the fusion line are reduced.  相似文献   

15.
Abstract

The present study has investigated the effects of dislocation density, produced by tensile prestraining, on the grain boundary segregation of phosphorus and carbon in a Fe-0.06P-0.002C (wt-%) alloy during stress free isothermal annealing at 500°C for periods up to 1800 h. Changes in grain boundary segregation were followed using Auger spectroscopy, while changes in dislocation density and structure were observed using transmission electron microscopy techniques. The segregation of phosphorus (but not carbon) was enhanced, compared with unstrained specimens, during initial aging. Analysis of diffusion rates required to cause the observed increase in phosphorus segregation suggested that the kinetics of phosphorus segregation was enhanced by pipe diffusion. At intermediate aging times, desegregation of phosphorus was observed, an effect attributed to a reduction in intragranular solute levels resulting from phosphorus precipitation on dislocations. In the case of carbon this process continued to the longest aging times examined and, essentially, complete desegregation ensued. In contrast, at these long aging times, phosphorus segregation resumed, and this was associated with an increase in the binding energy of phosphorus to the carbon denuded grain boundary.  相似文献   

16.
17.
The segregation of copper, tin and antimony to austenite grain boundaries at 900° C has been investigated in C-Mn steels using a scanning Auger microprobe (SAM). The specimens for microanalysis were prepared in a manner such that the prior austenite grain boundaries could be exposed by fracturing at room temperature in the UHV chamber of the SAM unit. Initial bulk concentrations ranged between 600 and 2600 ppm Cu, 50 and 360 ppm Sn and 8 and 35 ppm Sb. Significant enrichment of copper, tin and antimony was detected along the austenite grain boundaries. The grain boundary concentration of copper and tin was found to vary depending upon the initial bulk concentration while the average concentration of antimony at the grain boundaries was found to be approximately 1 at % for all of the heats studied. For heats in which a significant level of copper segregation was detected, a relationship of at % Cu = at % (Sn+Sb) at the austenite grain boundaries was observed. Deformation at 900° C prior to fracture in UHV was found to be necessary to promote segregation. Samples that were annealed at 900° C but not hot worked did not exhibit evidence of copper, tin or antimony segregation. These results have been interpreted in terms of the effects of deformation on segregation kinetics, and were correlated with hot ductility measurements made at 900° C.  相似文献   

18.
Abstract

Grain refinement of AZ91D Mg alloy by a spinning spray of Ar+CO2 mixture gas was investigated. The results have shown that the grain size was refined significantly and effectively by this processing after 15–30 min treatment, but further extension of the treatment did not refine the grain markedly. It was shown that this processing has an 'aging behaviour', which means that the refining efficiency declines with the extension of holding time at melting temperature. Although the cooling rate affected the final grain size of AZ91D sample refined by the processing, it did not change the aging behaviour. The effective time is 45–60 min. It was analysed that Al4C3 could act as nucleation site of the primary Mg, which contributes to the grain refinement. Mechanical property testing demonstrated that refinement by the Ar+CO2 processing significantly refined the grain size of the as cast AZ91D samples produced by sand and permanent cast and in turn enhanced the strength and improved the elongation.  相似文献   

19.
The influence of vanadium on grain boundary segregation of phosphorus has been studied in iron and iron-carbon alloys by means of fracture experiments in a scanning Auger microprobe. The emphasis here is to study the effects of vanadium on the interaction processes operative under circumstances when structure in the interior of the grain (in the present case carbide formation) and grain boundary segregation form simultaneously. It is emphasized that to predict and analyse the behaviour of an alloy, it is important to consider atomic interactions both at the grain boundaries and in the grain interior and that between the constituents and the grain boundaries. The study suggests that the principal determining factor in the scavenging or retardation of migration of phosphorus to the grain boundaries is whether vanadium is present in the combined form (say, carbide) or is available in solid solution form. When vanadium is present in solid solution form, grain boundary segregation of phosphorus is low because of the chemical interaction of vanadium and phosphorus. However, as carbon is increasingly introduced in the alloy, vanadium now preferentially reacts with carbon in view of higher interaction for carbon as compared to phosphorus. A consequence of this is the increase in the grain boundary concentration of phosphorus. In such a situation the presence of excess carbon in addition to what is stoichiometrically required to precipitate the entire vanadium as vanadium carbides, serves as a palliative with regard to the reduction in the intergranular concentration of phosphorus. This palliative behaviour is explained in terms of the sitecompetition model. An effort is also made to examine the behaviour of segregating elements in terms of whole range of probable interactions (both at the grain boundaries and in the grain interior) and chemical interaction energies.  相似文献   

20.
Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号