首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract

Direct laser sintering of a multicomponent Cu based metal powder was successfully processed through the mechanism of liquid phase sintering with partial melting of the powder. The effects of processing parameters such as laser power, scan speed, scan line spacing and layer thickness on the densification and microstructural evolution of the laser sintered powder were investigated. It was found that with increasing laser power or decreasing scan speed, the density of the sintered parts increased and the microstructures became denser. However, the combination of higher laser powers (>400 W) and higher scan speeds (≥0·06 ms?1) gave rise to 'balling' effect. A successive transition from discontinuous scan tracks to coherently joined ones occurs with decreasing scan line spacing. Lowering the thickness of the powder layer promises an improvement in bonding coherence between sintered layers. A single factor termed 'energy density by volume' is defined to evaluate the combined effect of various processing parameters on the density of laser sintered powder. With increasing the energy density by volume up to ~0·16 kJ mm?3, the densification rate is relatively high. However, with intensifying the energy density over ~0·23 kJ mm?3, the mechanism of particle bonding may change into full melting/solidification, leading to a decrease in the sintered density.  相似文献   

2.
This article reports experimental results on laser sintering of A356 aluminum alloy and A356/SiC composite powders. Effects of scan rate, sintering atmosphere, hatch spacing, and SiC volume fraction (up to 20%), and particle size (7 and 17 μm) on the densification were studied. The phase formation and microstructural development were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Laser sintering under argon atmosphere exhibited higher densification compared to nitrogen. A faster sintering kinetics was observed as the scan rate decreased. Except at a low SiC content (5 vol%), the composite powders exhibited lower densification kinetics. The densification was improved when finer SiC particles were utilized. Microstructural studies revealed directional solidification of aluminum melt to form columnar grains with inter-columnar silicon precipitates. In the presence of SiC particles, aluminum melt reacted with the ceramic particles to form Al4SiC4 plates.  相似文献   

3.
WC cemented carbides with a greener alternative binder to Co, AISI 304 stainless steel (SS), were processed through high energy ball milling (HEBM). The milling parameters, such as rotation speed, ball-to-powder ratio and milling time were investigated. Selected milling conditions were applied to obtain a nanosized powder of WC-12?wt% SS with a highly uniform distribution of the ductile phase. For comparison, a conventionally wet milled powder was also prepared. Both powders were thermally characterized by dilatometry, up to 1450?°C, using vacuum atmosphere, and structural and microstructural analysis were performed in the sintered samples. The nanometric size of the HEBM powder particles markedly affected its densification and thermal reactivity; when compared with the micrometric powder obtained from conventional milling, early starting densification, with a greater contribution of solid state sintering, and increased reactivity, with formation of a larger amount of (M,W)6C phase, was noticed during sintering of HEBM powder compacts.  相似文献   

4.
The physical and mechanical properties of YBa2Cu3O7–° superconductors are examined. These properties are related to powder preparation method, powder characteristics, sintering behaviour and sintered microstructure. The sintering atmosphere and sintering schedules affect the final microstructure very strongly and determine, in conjunction with starting powder characteristics, the sintered density. The mechanical properties such as Young's modulus, bend strength and critical stress intensity factor (fracture toughness) are measured and related to microstructure as determined by electron microscopy. Control of microstructure by careful powder selection and sintering schedule is seen as key to optimizing the physical and mechanical properties of the material. Finally attention is drawn to fabrication techniques and how these must be optimized in order to realize the mechanical properties which are necessary if these are to be useful as engineering materials. Comparisons between fabrication techniques show that uniaxial powder pressing suffers from limitations in terms of specimen complexity and densification whereas the favoured route, termed viscous processing, gives a more homogeneous microstructure, higher strength and allows near theoretical density to be achieved.  相似文献   

5.
Sintering of 17-4PH stainless steel feedstock for metal injection molding   总被引:1,自引:0,他引:1  
The sintering behavior of 17-4PH stainless steel feedstock for metal injection molding was investigated in the temperature range of 650-1050 °C. Effects of sintering conditions, such as sintering temperature and sintering atmosphere, were examined. Results showed that when sintered in the hydrogen/nitrogen atmosphere, the 17-4PH feedstock was oxidized over the temperature range of investigation. The degree of oxidization increased with the sintering temperature. The main oxidization product was Cr2O3 as revealed by X-ray diffraction and composition analysis. The oxidation can be avoided by sintering in vacuum or argon atmosphere.  相似文献   

6.
Ultrafine Si3N4 powder with average particle size of 30 nm prepared by a thermal plasma CVD was sintered at 1750 °C in nitrogen for 1 h. The sintering behaviour of the powder was characterized by the crystallization of the powder and the resultant sintered bodies were observed with microscopes. It was found that the sinterability depended strongly on the green density and the degree of crystallization. If the powder was homogeneously mixed with sintering additives, it sintered to 98% density at 1750 °C in a nitrogen atmosphere. The microstructure of the sintered bodies observed by SEM indicated that they consist of needle-like grains with an aspect ratio of about 4. The microstructure of a thin film of the sintered body observed by TEM indicated that the grains with crystal habits were wet with liquid phase. TEM also clarified that two kinds of grain boundaries were present; one was wet with liquid phase along a grain boundary and the other was a coincident one without liquid phase. The lattice fringes of liquid phase suggested the presence of Y-apatite which would be generated during cooling.  相似文献   

7.
Abstract

Iron aluminides were prepared by a powder metallurgy process from elemental powders, mixtures of prealloyed and elemental powders, and prealloyed powder. The sintering behaviour of various powders was studied using scanning electron microscopy, optical microscopy, and density measurement. It was found that sintering of elemental powder involved two distinct processes, i.e. alloying and densification, but sintering of prealloyed powder involved densification alone. The addition of prealloyed powder to elemental powders was helpful in restraining the swelling of sintered samples, the degree of swelling of sintered samples being reduced as the amount of prealloyed powder increased. For samples made from Fe-25 at.-%Al prealloyed powder, remarkable shrinkage was measured after sintering at 1250°C for 1 h. Within the correct range, their density increased with sintering temperature and time, but prolonged sintering at high temperature resulted in the loss of aluminium and a two phase microstructure. The difference in sintering behaviour between the various powders was discussed on the basis of thermodynamics.  相似文献   

8.
A laser beam was used to sinter green compacts of alloy powder. Elemental diffusion occurred during laser sintering, forming refined Fe3C and CuMo2S5–x phases. Laser sintering can produce useful parts of desirable microstructure and good properties which offers advantages over those parts prepared by conventional sintering. A green compact with a diameter of 10 mm can be penetratively sintered within 5 min, showing the prospect for industrial applications.  相似文献   

9.
采用机械合金化法制备出Mo-8wt%Cu超细复合粉末,并对由该复合粉末所制得的压坯进行了液相烧结,利用SEM、XRD等分析手段对复合粉末的特性和烧结体的组织进行了表征和观察,实验结果表明,该方法制备的Mo-8wt%Cu超细复合粉末颗粒细小,平均粒径在300nm左右,高能球磨后的复合粉末由Mo-Cu过饱和固溶体相和Cu相组成,而且两相的晶粒度达到纳米级,其中Mo-Cu过饱和固溶体相的晶粒约为106nm,复合粉末具有很高的烧结特性,经高温烧结后合金致密度达到98.5%以上,而且金相组织分布均匀。  相似文献   

10.
A compact gains strength in sintering through low-temperature interparticle bonding, followed by further strength contributions from high-temperature densification. On the other hand, thermal softening substantially reduces a compact's strength at high temperatures. Therefore, the in situ strength during sintering is determined by the competition among interparticle neck growth, densification, and thermal softening. Distortion in sintering occurs when the compact is weak. Most strength models for sintered materials are semi-empirical relations based on the sintered fractional density. These models do not include microstructure or sintering cycle parameters; thus, they do not provide guidelines for thermal cycle design to improve compact dimensional control. A strength evolution model is derived which combines sintering theories and microstructure parameters, including interparticle neck size, solid volume fraction, and particle coordination number. The model predicts sintered strength and when combined with thermal softening gives a good prediction of in situ strength. The validity of the model is verified by comparison to experimental data for sintered and in situ strength of bronze and steel powders.  相似文献   

11.
An improvement in processing of hydroxyapatite ceramics   总被引:17,自引:0,他引:17  
Hydroxyapatite ceramics have been fabricated via two different processing routes, a conventional processing route and an emulsion-refined route. The conventional precipitation processing of powder precursors for hydroxyapatite ceramics results in the formation of hard particle agglomerates, which degrade both the compaction and densification behaviour of the resultant powder compacts. An emulsion-refinement step has been shown to be effective in softening particle agglomerates present in the conventionally processed powder precursor. As a result, the emulsion-refined powder compact exhibits both a higher green density and a higher sintered density than the un-refined powder compact, on sintering at temperatures above 800 °C. The effect of powder agglomeration on densification during both the initial and later stage of sintering is discussed. The attainable sintered density of the conventionally processed material was found to be limited by the presence of hard powder agglomerates, which were not effectively eliminated by the application of a pressing pressure of 200 MPa. These hard powder agglomerates, which form highly densified regions in the sintered ceramic body, commenced densification at around 400 °C which is more than 100 °C lower than the densification onset temperature for the emulsion-refined powder compact, when heated at a rate of 5 °C min–1. The inter-agglomerate voids, manifested by the differential sintering, resulted in the formation of large, crack-like pores, which act as the strength-limiting microstructural defects in the conventionally processed hydroxyapatite. A fracture strength of 170±12.3 MPa was measured for the emulsion-refined material compared to 70±15.4 MPa for the conventionally processed material, when both were sintered at 1100 °C for 2 h.  相似文献   

12.
A. Simchi   《Materials Letters》2008,62(17-18):2840-2843
Laser sintering of Fe–C–Cu steel powder for rapid manufacturing of sintered components for functional testing was studied. The effects of C and Cu addition on the densification and the attendant microstructural features were investigated. The influence of iron particle size on the sintering kinetics was also examined. It is shown that the alloying elements significantly improve the densification rate when fine iron particles and high laser intensity are used. The mechanism of particle bonding and the effect of the alloying elements are presented.  相似文献   

13.
A methodology is presented that compares the microstructural and mechanical properties of as-cast and additive-made ferritic-austenitic duplex steel 1.4517. Microstructure of approximately equal amounts of ferrite and austenite measured in as-cast material could not be replicated in post heat-treated laser powder bed fusion samples after 30 min and 60 min of post heat treatment. This is attributed to nitrogen loss during powder atomization which left fewer austenite formers. Post-heat treated laser powder bed fusion samples of duplex structure had its austenite content repeatedly adjusted between 38 % and 40 %. As-built laser powder bed fusion tensile specimens which had a ferritic microstructure recorded high tensile and yield strength but had very poor elongation. Post heat-treated duplex laser powder bed fusion tensile specimen built in both horizontal and vertical orientations had good tensile and yield strength comparable to conventional casting processes; Tensile strength – 739 MPa (horizontal), 759 MPa (vertical); Yield strength (Rp0.2) – 489 MPa (horizontal), 525 MPa (vertical). The horizontally built duplex specimen had a very high elongation of 32 % than the vertical (11 %) or conventionally reported (22 %). This work establishes the 1.4517 duplex steel as a good candidate with good mechanical properties when processed by additive manufacturing.  相似文献   

14.
Abstract

Metal matrix composites, based on 316L stainless steel and reinforced with TiC and TiCN particles, were manufactured following a powder injection moulding route: mixing, preparation of feedstock, moulding, debinding and sintering. The 316L stainless steel and carbide powders were dry mixed and moulded with wax based binder. The critical powder loading for injection moulding was 62·5 vol.-% for all samples. Binder debinding was performed by solvent and thermal method. After debinding, the samples were sintered at 1250 and 1385°C for 1 h in pure H2. Metallographic studies were conducted to extend densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all samples after wear tests. All powder, fracture surfaces of moulded and sintered samples, and worn surfaces of all the samples, were examined using scanning electron microscope. The sintered density of injection moulded 316L stainless steel samples, reinforced and unreinforced, increases with increasing sintering temperature. The addition of TiC and TiCN improves the hardness and wear resistance with increasing sintering temperature.  相似文献   

15.
In this work, austenitic oxide dispersion strengthened (AODS) steel of composition Fe–16Cr–16Ni–1.5 W–0.21Ti–0.3Y2O3 (wt. %) was fabricated using two–stage ball milling followed by consolidation through spark plasma sintering (SPS). In the first–stage, mechanical alloying (MA) of ferritic powder and nano sized Y2O3 was carried out. This was followed by the addition of Ni in second–stage milling. SPS of the milled powder was carried out at 900, 950, 1000 and 1050 °C to explore the role of SPS temperature on density, microstructure as well as mechanical properties of the consolidated samples. A relative density of ~ 99% was obtained for samples sintered at 950 and 1000 °C. The as–sintered samples were subsequently solution annealed at 1075 °C for 2 h and water quenched. X–ray diffraction studies confirmed the presence of austenite in the consolidated and solution annealed samples. Electron back scatter diffraction analysis of solution annealed samples sintered at all the temperatures revealed a bimodal microstructure. The average grain size of 1.07 ± 0.72 µm was obtained for solution annealed samples sintered at 1000 °C. Yield strength and elongation of the same was measured as 851 MPa and 18%, respectively at room temperature. These values are the best combination of strength to elongation achieved on AODS alloys processed using MA and SPS, which makes this AODS steel much promising for high temperature applications.  相似文献   

16.
The influence of carbon content in the range of 0.01–0.3 wt.% on microstructure, hardness and tensile property of sintered Fe-Cr-Mo steels was investigated. The sintered Fe–3.0 wt.%Cr–0.5 wt.%Mo–(0.1, 0.2, 0.3) wt.% C steels were prepared by using powder metallurgical process. After sintering, the specimens were rapidly cooled by nitrogen at the rate of 5.4 °C/s. It was found that in the sintered steels with a lower carbon content of 0.01 and 0.1 wt.%, the allotriomorphic ferrite and Widmanstӓtten ferrite formed at austenite grain boundaries and grew to occupy the whole prior austenite grains. With higher carbon contents of 0.2 and 0.3 wt.%, the microstructures consist of bainite, martensite and some retained austenite. These steels exhibited increases of hardness, tensile strength and elongation at break with increasing carbon content. Increase of strength is due to the transformations from austenite, formed during sintering, to hard bainite and martensite structures.  相似文献   

17.
316L不锈钢粉末注射成形件的烧结致密化行为   总被引:1,自引:0,他引:1  
为了控制粉末注射成形零件的最终尺寸精度和力学性能,对316L不锈钢粉末注射成形件的烧结致密化行为进行了试验研究,分析了烧结温度和升温速率对试件致密化行为以及烧结件力学性能的影响.试验结果表明,致密化过程始于1080℃左右,主要在1200~1300℃的升温过程中快速进行,致密化速率随着升温速率的升高而升高.烧结件的抗拉强度、抗弯强度以及延伸率,不但取决于致密化程度,而且与微观结构有关.分析表明,将基于扩散控制和强度控制的烧结理论结合,可以有效地解释316L不锈钢粉末的致密化行为,需在现有的烧结模型中考虑强度影响因素,才能更真实地模拟烧结过程.  相似文献   

18.
The sintering behaviours of four kinds of Si3N4 powders were investigated by dilatometry in 10 atm N2 at 1890, 1930 and 2050° C. The sinterabilities of powders were compared and discussed in relation to the powder characteristics. A large size distribution in the powder accelerated grain and pore growth at <1800° C, which resulted in the inhibition of further densification at >1800° C. The presence of carbon in a powder prevented densification. A powder with a uniform grain size kept the microstructure of the sintered material uniform during sintering at <1800° C and gave a high degree of shrinkage at >1800° C. Densification at >1800° C was accompanied by the dissolution of equi-axial -Si3N4 grains and reprecipitation as elongated -Si3N4 grains from the oxynitride liquid. The relation between the densification and microstructure is discussed in terms of the relative rates of densification and grain growth.  相似文献   

19.
Selective laser sintering of gas atomized M2 high speed steel powder   总被引:5,自引:0,他引:5  
Selective laser sintering of the gas atomized M2 high speed steel powder was performed using laser powers of 2.5–100 W, scan rates of 1–30 mm/s and scan line spacings of 0.15–0.75 mm. With increasing laser power, the sintered surface varied from open/closed pores to a fully dense structure. Large lateral pores were found in the sintered surface of samples using high scan rates. For fully dense samples, smooth surfaces could be achieved using large scan line spacing. The as-supplied and sieved M2 powder particles with size ranging from 0.04 to 400 m and 53 to 150 m, respectively, were found to give better laser sinterability as compared with those powder particles with finer (<38 m) or coarser (>150 m) sizes.  相似文献   

20.
Compound-based Cu paste was synthesized to prepare electrically conductive films on plastic substrate. The Cu pastes screen-printed onto polyimide were annealed inside a furnace and also by an ultraviolet laser beam and the effects of annealing conditions on the microstructures and electrical properties were investigated. Both of thermal and laser processes were carried out under N2 gas flow, which was very effective in preventing oxidation. The minimum resistivity available with thermal sintering was 1.30 × 10− 5 Ω cm and a slightly higher resistivity was obtained by laser sintering. This value is several orders of magnitude lower than that reported for the copper nanoparticle paste thermally sintered under N2 atmosphere. The variation of microstructure and electrical property with the laser power was very similar to the temperature dependence of these factors in thermal sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号