首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The present paper consists of two parts. In the first part the principles of a new method of metal powder production, termed 'solid assisted melt disintegration (SAMD)' are discussed and the typical characteristics of the produced powder are outlined. In the second part the effects of some processing parameters on the size distribution and mean diameter of the powder are reported. The SAMD method involves mixing solid particles (i.e. alumina) with the liquid aluminium alloy aided by mechanical agitation. The shear force induced by the impeller is transferred to the metal via the non-wetting solid medium and results in melt disintegration. The resulting mixture of aluminium droplets and alumina particles are subsequently cooled in air and screened through 300 μm sieve to separate alumina from solidified aluminium powder particles. The SAMD technique has demonstrated the capability to produce a wide particle size distribution. The small sized particles (i.e. <53 μm) exhibited irregular shapes, but larger ones were mostly spherical. These powder particles were dense (pore free) without attached satellite particles and exhibited a relatively coarse microstructure. The processing parameters investigated include the size of Al2O3 particles, Al2O3/Al weight ratio, stirring speed and stirring time. It was concluded that there exists an optimum value for each of the aforementioned parameters corresponding to a minimum in the mean particle size.  相似文献   

2.
Abstract

Self-propagating high temperature synthesis (SHS) is a process whereby reactants are ignited to spontaneously transform to products in an exothermic reaction. The aim of this study is to propose a method to join nickel aluminide with AISI 316 stainless steel by SHS and to study the combustion synthesis of nickel aluminide. From the heat of combustion synthesis junctions were formed between annular AISI 316 stainless steel and a powder metallurgy compact of Ni and Al blends. The Al mole ratio for testing the joining grade in the initial powder mixture varied from 25 at.-% to 40 at.-%. In order to check the sufficiency of the SHS reaction, the test temperature was compared with the thermodynamic calculation values. The metallographic analysis indicated that NiAl and Ni3Al were formed in the joint layer.  相似文献   

3.
A marked mismatch between CTE of cordierite and mullite in composition develops internal stress, which causes significant growth of cracks and subsequent damages which confer them a very good ability to thermal shock resistance. To investigate the effect of sintering temperature on the thermal shock resistance, the samples sintered at four different temperatures and evaluation of Young’s modulus monitored during 25 shock cycles. The results showed that densification behavior, thermomechanical properties and thermal shock resistance of this refractory was closely related to sintering temperature. Furthermore, during specific (5th to 10th) thermal-shock cycles a notable increase occurs in the Young’s modulus of the samples, this attributed to the formation of viscose bridges, which shield the tip of growing cracks.  相似文献   

4.
为准确测量Ga N HEMT与夹具界面层的热阻,在两种不同的管壳界面材料条件下,利用经过改进的显微红外热像仪测量Ga N HEMT的降温曲线。采用结构函数算法对两种降温曲线进行分析,得到反映器件各层材料热阻的积分结构函数曲线。利用JESD51-14中的方法分别确定结壳热阻分离点和夹具到热沉的热阻分离点,得到结壳热阻Rj-c为1.078 K/W,夹具到热沉的热阻Rf-s为0.404 K/W。利用两种条件下的总热阻减去结壳热阻和夹具到热沉的热阻得到管壳界面材料热阻,导热硅脂热阻为0.657 K/W,空气介质热阻为1.105 K/W。依据该方法可以实现对界面层热阻的测量。  相似文献   

5.
The out-of-plane tensile strength of CFRP laminate determined by the direct tensile method varies with specimen geometry and size. This effect was first experimentally observed using aligned CFRP. To explain the geometry and size effects from a mechanical point of view, an analytical model combining Weibull statistics, including the concept of effective volume, and a fracture criterion under multi-axial loading was constructed on the basis of stress distributions calculated using the finite element method. The predicted out-of-plane tensile strength of aligned CFRP was found to be consistent with experimental results. Thus, the present model is useful for reducing experimentally determined out-of-plane tensile strength under complex stress distributions to that under a uniaxial and uniform stress distribution.  相似文献   

6.
To produce grain boundary barrier layer capacitors with a simpler fabrication process and more-stable dielectric characteristics, a modified reduction-reoxidation method was developed. Nb2O5-doped (Ba0.8 Sr0.2)(Ti0.9 Zr0.1)O3 (BSTZ) was calcined at 1170 °C for complete formation of ABO3 phases. After calcination CuO was added to BSTZ as a liquid-phase promoter and insulating boundary layer material. The ceramics were sintered in a reducing atmosphere, and then the fired samples were annealed in air to reoxidize the reduced CuO to form insulating layers. The dielectric constant of the fabricated capacitors was decreased for higher annealing temperature, longer annealing time and smaller grain size. The loss tangent of the fabricated capacitors was increased for BSTZ with more CuO added, and was almost unchanged with annealing temperature, annealing time and grain size because of the existence of an insulating boundary layer material (CuO).  相似文献   

7.
The low-temperature shrinkage of tungsten was greatly accelerated by the addition of trace Nb and Ni, and the addition of trace Nb and Ni also significantly promoted the final sintering density. The 99.1% of theory density for W–0.1 wt.%Nb–0.1 wt.%Ni material sintered at 1600 °C was obviously greater than 93.7% of theory density for W material sintered at 2000 °C. Ball milling treatment played an important role in promoting the sintering densification of W–0.1 wt.%Nb–0.1 wt.%Ni powder, and the powder milled for 10 h (W10) could be sintered to near full density (99.4% of theory density) at 1600 °C. The ball milling for 15 h has no effect in improving the sintering density, but it induced rapid growth of tungsten grains. The microhardness and tensile strength of the sintered tungsten alloys were highly dependent on its sintering density and grain size. Improving the sintering density while controlling the grain growth could effectively promote the microhardness and tensile strength. Furthermore, the improvement of thermal shock resistance of the W10 alloy was due to good microstructure and the increase in the tensile strength.  相似文献   

8.
Abstract

In this experiment the effects of silica content, sintering time, and sintering temperature on the microstructure and magnetic properties of a ferrite, Ni032Zn068Fe2O4, were studied.

The initial permeability is reduced only slightly when the silica content is less than 0.2 wt %. The Q value is proportional to the silica content approximately. The peak value of μ iQ product is about constant when the silica content is less than 0.2 wt %.

The best sintering temperature is between 1175°C and 1200°C. The addition of silica (<0.2 wt%) enhances the rate of densification, but the control of sintering time has to be more precise because the addition of silica makes the shape of μ iQ product peak become sharper and narrower.  相似文献   

9.
In this study, the relationship between casting process parameters and mechanical properties in a 14.5%Si containing corrosion resistant cast iron was statistically investigated using Taguchi method, one of the design tools of experiments. Three casting process parameters, which might be thought to be closely related to the determination of mechanical properties of high-silicon cast irons, such as melting temperature, mischmetal addition, and pouring temperature were chosen. Using signal-to-noise (SN) ratio calculated from the ultimate tensile strength (UTS) of each experimental casting run, the relationship between the casting process parameters and mechanical properties was statistically evaluated. The casting condition of high melting temperature of 1,650 °C, 0.2% mischmetal addition, and pouring temperature of 1,350 °C, led to an excellent UTS of 110–150 MPa, which is beyond the industrial criterion. The effects of casting process parameters on mechanical properties and corrosion resistance were further confirmed by combined analysis of fractography, hydrogen content determination, microscopic test, and acid resistance test.  相似文献   

10.
PVD coatings applied to components form hard, stronger layers and generate high residual compressive stresses that limit the plastic deformation in surface layers of the base metal thus increasing its tensile strength and resistance to fatigue loading. The purpose of this paper is to experimentally determine the influence of the deposition of 2 to 16.5‐μm‐thick PVD coatings of TiN, Cr, (Cr+TiN), (TiC)N, (TiAl)N onto specimens of stainless steel 321 and titanium alloys of types MILT‐81556A and (10‐2‐3; 4966) on their tensile strength and low‐cycle fatigue resistance when the development of large elastic–plastic strains takes place. The tensile and low‐cycle fatigue tests were conducted under conditions of axial zero‐to‐tension cycle of the stress‐controlled loading on flat 1‐ to 1.5‐mm‐thick specimens in the initial state (uncoated specimens) and after application of a PVD coating, including those after pretensioning or after cyclic prestraining in the low‐cycle fatigue range. The deposition of PVD coatings is found to enhance the characteristics of tensile strength and low‐cycle fatigue resistance in the quasi‐static fracture range. The deposition of PVD coatings on specimens cyclically prestrained to the values of 53–86% of the number of cycles to fracture, changes the cyclic properties of the material and predetermines the fatigue fracture mode only.  相似文献   

11.
This paper presented a vacuum brazing technology for 304 stainless steel plate-fin structures with BNi2 filler metal. The effect of brazing temperature on tensile strength and microstructure has been investigated. The tensile strength is increased along with the increasing of brazing temperature. The microstructure is very complex and some Boride compounds are generated in the brazed joint. Full solid solution can be generated in the middle zone of joint when the brazing temperature is increased to 1100 °C. The brittle phases always exist in the fillet no matter how the brazing temperature changes, but the microstructure in fillet becomes more uniform and the tensile strength is increased with the brazing temperature increasing. In total, the brittle Boride compounds are decreased with the brazing temperature increase. Brazing with a filler metal thickness 105 μm and 25 min holding time, 1100 °C is the best suitable brazing temperature and a tensile strength of 82.1 MPa has been achieved for 304 stainless steel plate-fin structure.  相似文献   

12.
This paper presents a study of the effect of filler metal thickness on tensile strength for a stainless steel plate-fin structure by finite element method and experiment. The results show that the filler metal thickness has a great effect on tensile strength. The tensile strength is increased with the filler metal thickness increase, then it keeps stable when the filler metal thickness is 105–140 μm. But it decreases rapidly when the filler metal thickness is larger than 140 μm. The fracture location is shown at the end of vertical fin when the filler metal thickness is 105–140 μm. Specimens with filler metal thickness smaller or larger than 105–140 μm rupture in the brazed filler metal. The optimal filler metal thickness is 105 μm, using which can get higher strength for 304 stainless steel plate-fin structures.  相似文献   

13.
An aluminum-bearing high strength steel with relatively high precipitation hardening was fabricated by lowering coiling temperature to 627 °C. The influence of coiling temperature on microstructure evolution and precipitation behavior was comprehensively investigated by means of scanning electron microscopy, electron back-scatter diffraction and transmission electron microscopy. Both yield strength and tensile strength can be increased by around 100 MPa through decreasing coiling temperature to 627 °C, whereas there is nearly no deterioration in ductility. In addition, The grain boundary precipitation of (Fe, Cr, Mn)xCy-type carbides can be effectively suppressed by lowering coiling temperature. Regardless of coiling temperature, both interphase precipitation consisting of curved and planar shape and random precipitation can be observed. Moreover, the sheet spacing can be refined from 29 nm–47 nm to 18 nm–27 nm by lowering coiling temperature from 721 °C to 627 °C. This small sheet spacing provides a greater precipitation hardening. Compared with a coiling temperature of 721 °C, the precipitation hardening can be increased by around 100 MPa for a coiling temperature of 627 °C.  相似文献   

14.
Polycrystalline Cu-Co ferrite powder was synthesized following oxalate precipitation method. The samples of the compound Cu0.5Co0.5Fe2O4 were heated at different temperatures in the range of 773-1173 K and were characterized by X-ray diffraction and SEM techniques. The results of XRD show the formation of single-phase cubic spinel structure. The lattice parameter showed a minimum value for the sample heated at 1073 K. It has been observed that grain size increases with the increase in temperature and is maximum (3.2 μm) for the powder sintered at 1173 K.  相似文献   

15.
骨料粒径是影响混凝土力学性能及破坏机理的重要因素。从细观角度出发,将混凝土看作由骨料颗粒、砂浆基质及界面过渡区组成的三相复合材料,考虑细观组分的应变率效应,建立了混凝土动态拉伸破坏行为研究的细观力学分析模型,模拟研究了不同骨料粒径下混凝土动态拉伸破坏行为,并揭示了动态拉伸强度的尺寸效应规律。研究表明:低应变率下骨料不发生破坏,骨料粒径对混凝土动态拉伸破坏模式及拉伸强度影响显著,且拉伸强度的尺寸效应随骨料粒径的减小而削弱;高应变率下裂缝将贯穿骨料,骨料粒径的大小对混凝土动态拉伸强度及尺寸效应影响可忽略。最后,结合应变率效应的影响机制,建立了混凝土拉伸强度的"静动态统一"尺寸效应理论公式,该公式可以较好描述各骨料粒径下混凝土动态拉伸强度与试件尺寸的定量关系。  相似文献   

16.
Composite materials that use an epoxy resin as a matrix resins have superior mechanical properties over standard structural materials, but these materials exhibit time and temperature behavior when used for long periods and under high temperatures. This time and temperature behavior has not been fully explained. The purpose of this paper is to further describe this time and temperature behavior, increasing the reliability of this class of composite materials. The time and temperature dependence of flexural strength was examined by creep and fatigue testing. Flexural creep tests were carried out at various temperatures below the glass transition temperature. Flexural fatigue tests were carried out at various stress ratios, temperatures below the glass transition temperature and 2 frequencies. The time-temperature superposition principle held for the flexural creep strength of this material. A method to predict flexural creep strength based on the static strength master curve and the cumulative damage law is proposed. When the fatigue frequency was decreased while temperature and stress ratio are held constant the flexural fatigue strength decreases. The time-temperature superposition principle was also found to hold for the flexural fatigue strength with respect to frequency.  相似文献   

17.
Deng  Qin  Wei  Wenfu  Yin  Guofeng  Xie  Wenhan  Huang  Zhanglin  Ren  Junwen  Yang  Yan  Chen  Qichen  Wu  Guangning 《Journal of Materials Science》2021,56(33):18522-18533
Journal of Materials Science - Carbon material, because of its high thermal conductivity, ablation resistance and friction resistance, has been widely used in the field of electrical engineering....  相似文献   

18.
The effect of thermal reduction temperature and time on the structure and composition change of reduced graphite oxide sheets was studied. The results show that the exfoliation degree increased with the elevation of temperature, as evidenced by the decreased layers in the defected nanocrystallites formed by the collapse of graphite oxide sheets. Although, the exfoliation degree shows reverse trend with the extension of time studied. As for the de-oxygenation, both the elevation of temperature and the extension of time favor the reduction process, evidenced by the increasing atomic ratio of carbon to oxygen, and a quite marked de-oxygenation effect was obtained with atomic ratio of 499 by heating at 1000 °C for 2 h. A structural schematic of thermally reduced graphite oxide sheets was proposed for the understanding of the reduction process.  相似文献   

19.
《材料科学技术学报》2019,35(12):2778-2784
Porous ultra-high temperature ceramics(UHTCs) are potential candidates as high-temperature thermal insulation materials. However, high thermal conductivity is the main obstacle to the application of porous UHTCs. In order to address this problem, herein, a new method combining in-situ reaction and partial sintering has been developed for preparing porous Zr C and Hf C with low conductivity. In this process, porous Zr C and Hf C are directly obtained from ZrO_2/C and HfO_2/C green bodies without adding any pore-forming agents. The release of reaction gas can not only increase the porosity but also block the shrinkage. The asprepared porous Zr C and Hf C exhibit homogeneous porous microstructure with grain sizes in the range of 300–600 nm and 200–500 nm, high porosity of 68.74% and 77.82%, low room temperature thermal conductivity of 1.12 and 1.01 W·m~(-1) K~(-1), and compressive strength of 8.28 and 5.51 MPa, respectively.These features render porous Zr C and Hf C promising as light-weight thermal insulation materials for ultrahigh temperature applications. Furthermore, the feasibility of this method has been demonstrated and porous Nb C, Ta C as well as Ti C have been prepared by this method.  相似文献   

20.
采用亚微米WC粉和微米Co粉混合粉末作为原料,利用高能球磨与放电等离子烧结(SPS)技术制备超细晶WC-10Co硬质合金.研究表明,球磨后直接烧结时,当温度由1150℃增加到1200℃,试样的晶粒尺寸和硬度没有明显变化(平均晶粒尺寸约250nm),但致密度提高至98.6%,横向断裂强度由1045MPa提高到1819MPa.当对球磨后的混合粉末进行900℃真空处理后,在较低温度烧结的条件下试样的致密度则高达99%,且横向断裂强度与未处理粉末在相同工艺下烧结获得提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号