首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract

The alloying behaviour, microstructure, and high temperature mechanical properties of quaternary polycrystalline Ni3 (Si,Ti), which was alloyed with transition elements V, Nb, Zr, and Hf beyond their maximum solubility limits, were investigated. The solubility limits of the quaternary elements in the L12 Ni3 (Si,Ti) phase were determined to be ranked in the sequence of Nb > V > Hf > Zr, and correlated with the size misfit parameter between Si and the quaternary element X, and with the difference in formation enthalpy between Ni3 Si and Ni3 X. The second phases (dispersions) formed beyond the solubility limit were identified as a face centred cubic type Ni solid solution for the V containing Ni3 (Si,Ti) alloy and Ni3 X type compounds of the Nb, Zr, and Hf containing Ni3 (Si,Ti) alloys. The second phase dispersions in the L12 phase matrix resulted in strengthening over a wide range of temperatures. The high temperature tensile elongation was improved by the introduction of the second phase dispersions. Among the quaternary Ni3 (Si,Ti) alloys observed in the present study, the Nb containing Ni3 (Si,Ti) alloy with the Nb containing second phase dispersion was shown to have the most favourable mechanical properties.  相似文献   

2.
Abstract

The effect of Ta content on the transformation characteristics of Ni–Ti–Ta ternary alloys has been studied. In (Ni51 Ti49 )1-x Tax type alloys, the phase transformation temperatures increase with Ta content, especially when the Ta content is less than 4 at.-%. In Ni50 Ti50-x Tax type alloys, the phase transformation temperatures decrease as Ta content increases. The martensite start temperature is less sensitive to changes in Ni content in ternary Ni–Ti–Ta alloys than that in Ni–Ti binary alloys. The phase transformation temperatures of Ni–Ti–Ta ternary alloys are mainly controlled by the Ni/Ti ratio in the Ni–Ti matrix.  相似文献   

3.
The mechanical properties of the L12-type Ni3(Si, Ti) polycrystals, which were alloyed with 1–2 at% of various transition metals and also doped with boron, were investigated over a wide range of temperatures. The addition of Hf enhanced the levels of yield stress whereas the addition of Cr, Mn and Fe reduced the levels of the yield stress over a wide range of temperatures. Ni3(Si, Ti) alloyed with Cr, Mn and Fe showed a shallow minimum in the yield stress-temperature curves. This result was correlated with the modification of the micro-cross-slip process by the additives. At low temperatures, the addition of Hf and Nb slightly reduced the elongation, while the addition of Cr, Mn and Fe improved elongation. This elongation behaviour was interpreted as the alloying effect on the intergranular cohesive strength of L12 ordered alloys. At high temperatures, the elongation of Ni3(Si, Ti) alloyed with Hf showed a particularly high value. This elongation behaviour is discussed based on the alloying effect on the competition between dynamic recrystallization and cavitation at grain boundaries. The fracture surfaces exhibited a variety of fracture patterns, depending on temperature and the alloy, and were primarily well correlated with the elongation behaviour. The ductilities of most of the alloys at high temperatures were reduced by the tests in air.  相似文献   

4.
The alloying behavior, the microstructure and the high-temperature tensile properties of the Nb-added Ni3(Si,Ti) alloys were investigated. The solubility limit of Nb element in the L12 Ni3(Si,Ti) phase at 1273 K was shown to be approximately 2.7 at%, and thermodynamically discussed. The second-phases (dispersions) formed beyond the solubility limits were identified as D0a-type Ni3Nb and Ni12Si4TiNb2 compounds, and contained some lattice defects with incoherency with the L12 Ni3(Si,Ti) matrix. The Nb-containing second-phase dispersions in the L12 Ni3(Si,Ti) phase matrix resulted in strengthening over a wide range of temperature, and also an improvement of the high-temperature tensile elongation.  相似文献   

5.
6.
Ni3Si alloy with different content of titanium was fabricated by powder metallurgy method. The microstructures, hardness and tribological properties of the alloys were investigation. The results showed that pure Ni3Si alloy was composed of β1‐Ni3Si phase and γ‐Ni31Si12 phase, and Ni3Ti phase formed with titanium addition. The hardness of the alloy decreased with the increasing titanium content. The friction coefficient of pure Ni3Si alloy increased with the increasing load, while the friction coefficient of the alloy with titanium addition decreased. The wear rates of the alloys were all increased with increasing load, and the alloy with 5 % titanium addition had the best wear resistance properties. The wear mechanisms of the alloys were abrasive wear at low load, and the wear mechanisms changed to oxidative wear at high load.  相似文献   

7.
Abstract

This paper reports an investigation of the aging behaviour of two Co free Cr containing maraging steels (Fe–1·0Si–11·2Cr–1·3Mo–9·1Ni–1·2Al–1·0Ti and Fe–0·8Si–17·2Cr–6·1Ni–0·4Al–0·9Ti, all at.-%), using hardness measurements, electron microscopy of replicas and thin foils, atom probe field ion microscopy (APFIM), and thermochemical calculations. Two different families of intermetallic phases (Ti6Si7Ni16G phase and η Ni3Ti) have been found to contribute to age hardening. The composition and morphology of these precipitates were studied in deformed and undeformed alloys after aging at 420–570°C for various times. In addition, reverted austenite has been found in the aged structure. Results obtained using APFIM are compared with equilibrium thermodynamic calculations and previous APFIM studies of conventional Cr free low Al and Si maraging steels having higher Mo contents.

MST/1558  相似文献   

8.
The environmental effect on the mechanical properties of boron-doped and undoped Ni3(Si, Ti) polycrystals was investigated by tensile testing in air from room temperature to 1073 K, and the results were compared with those obtained previously by tensile testing in vacuum. The environmental effect for the Ni3(Si, Ti) alloys was significant at ambient temperatures whereas that for the boron-doped Ni3(Si, Ti) alloys was considerable at elevated temperatures. When these samples at associated temperatures were tensile tested in air and also at low strain rate, intergranular fracture was dominant. It was suggested that the environmental embrittlements at low and high temperatures were due to hydrogen and oxygen absorbed from the air, respectively, and were caused by the weakening of the grain-boundary cohesion. It was proposed that boron competing with hydrogen, for site occupation or for its effectiveness at grain boundaries, has the effect of suppressing hydrogen embrittlement, whereas it was suggested that the low-melting phases, consisting of boron and oxygen (and/or constituent atoms), may be responsible for the ductility loss in the boron-doped Ni3(Si, Ti) alloys.  相似文献   

9.
The Ni3(Si, Ti) alloys doped with small amounts of carbon and beryllium were tensile tested in two environments, vacuum and air, over a wide range of test temperatures. The yield stresses of the carbon-doped alloys were almost identical to the undoped alloys while those of the beryllium-doped alloys were slightly higher than the undoped Ni3(Si, Ti) alloys. The doping with carbon enhanced the elongation and ultimate tensile strength (UTS) whereas doping with beryllium reduced the elongation over the entire temperature range tested. The fracture patterns were primarily associated with the ductility behaviour. As the elongation (or UTS) increased, the fracture pattern changed from the intergranular to the transgranular fracture patterns. No environmental embrittlement of the ductility of the carbon-doped alloys was found at ambient temperatures but it was evident at elevated temperatures. Ductilities were reduced at high temperatures when the carbon-doped alloys were tensile tested in air. At high temperatures the environmental embrittlement observed is suggested to be due to the penetration of (free) oxygen into the grain boundaries causing the ductility loss in the carbondoped alloys.  相似文献   

10.
Abstract

Six Ni–Ge alloys were prepared and equilibrated at 1000°C. The microstructures, compositions of phases, solubilities in various phases, volume fractions of phases, lattice parameters of Ni3 Ge, and microhardness values of phases were determined. Two alloys contained Ni3Ge and α, one alloy was single phase Ni3Ge, and three alloys contained Ni3Ge and Ni5Ge3. The volume fractions of second phase were 6 and 33%α and 37 and 54%Ni5Ge3. The amount of second phase in the third Ni3Ge–Ni5Ge3 alloy was too low to be determined accurately. The two phase alloys containing 6%α, 37%Ni5Ge3, or 54%Ni5Ge3 were tested in compression. A yield strength maximum was observed in the three alloys. The deformation behaviour of the alloy containing 6%α was similar to that of single phase Ni3Ge: crack formation along Ni3Ge grain boundaries and very low plastic strain were revealed. In alloys containing Ni3Ge and an appreciable percentage of Ni5Ge3, crack formation was not observed along Ni3Ge grain boundaries. Instead, at low temperatures, deformation and crack growth occurred within Ni5Ge3 grains and, at high temperatures, decohesion occurred along the Ni3Ge/Ni5Ge3 interphase. The plastic strain in the alloy containing 54%Ni5Ge3 increased to about 40%.

MST/1724  相似文献   

11.
Abstract

This study investigated the effect of aging on the structure and precipitation of second phases of Ni52Ti47·7Re0·3 shape memory alloys. The alloy was solutionised at 1000°C for 24 h before aging at various temperatures ranging from 300 to 600°C for 3 h. The matrix phase in both solutionised and aged specimens was martensite. Ti2Ni phase was also present in the microstructure of both solutionised and aged specimens and its volume fraction decreased as the aging temperature increased. Ni4Ti3 phase began in appearance by increasing aging temperature to 400°C. Ni4Ti3 precipitates had lenticular and non-geometry shapes. Aging at 600°C led to precipitation of Ni3Ti phase in the microstructure. This precipitated phase formed in white blocky shapes. Ti/Ni ratio increased and/or Ni content decreased in the matrix with increasing in aging temperature.  相似文献   

12.
Thermodynamic predictions suggest that silicon has the potential to be a potent sintering aid for Ti-Ni alloys because small additions of Si lower the solidus of Ti-Ni alloys appreciably (>200 °C by 1 wt.% Si). A systematic study has been made of the effect of Si on the sintering of a Ti-3Ni alloy at 1300 °C. The sintered density increased from 91.8% theoretical density (TD) to 99.2%TD with increasing Si from 0% to 2%. Microstructural examination reveals that coarse particles and/or continuous networks of Ti5Si3 form along grain boundaries when the addition of Si exceeds 1%. The grain boundary Ti5Si3 phase leads to predominantly intergranular fracture and therefore a sharp decrease in ductility concomitant with increased tensile strengths. The optimum addition of Si is proposed to be ≤1%. Dilatometry experiments reveal different shrinkage behaviours with respect to different Si contents. Interrupted differential scanning calorimetry (DSC) experiments and corresponding X-ray diffraction (XRD) analyses clarify the sequence of phase formation during heating. The results provide a useful basis for powder metallurgy (PM) Ti alloy design with Si.  相似文献   

13.
The structural relaxation of amorphous Ni7TM5Si10B15 (TM = V, Cr, Mn, Fe, Co, Ni) alloy was investigated by the electrical resistance measurement under isochronal annealing. The reference Ni75Si10B15 alloy showed no reversible changes in electrical resistance. All alloys other than TM = Ni exhibited a reversible change which is peculiar to the chemical short-range ordering. Only in TM = Cr alloy was the reversible part predominantly observed after pre-annealing, and in other alloys the irreversible change was also seen. The degree of reversible change below 623 K was in the order Fe > V > Cr > Co > Mn. This origin is discussed on the basis of Ni-TM correlation, which is considered to play an important role in ordering, and TM-metalloid correlation, which is considered to hinder the formation of an ordered phase.  相似文献   

14.
The mechanical properties of the Ni3(Si, Ti) alloys undoped and doped with 50 p.p.m. boron, both of which were polycrystalline specimens prepared by recrystallization, were investigated by tensile testing. The yield stress was found to increase with increasing test temperature to a maximum at 800 K, followed by a decrease. The tensile elongation was highest at room temperature and tended to decrease with increasing temperature for both alloys, but was consistently higher in the boron-doped Ni3(Si, Ti) alloys than in the undoped ones over all the test temperatures. The change in the ultimate tensile stress (UTS) with temperature was similar to that of tensile elongation. The transgranular fracture became dominant as the elongation increased, regardless of the alloys and the testing temperature. Thus, this work again verified that the alloying method proposed by the present authors is useful for improving the grain-boundary cohesion of L12-type ordered alloys.  相似文献   

15.
Abstract

An investigation is reported of phase equilibria in alloys of the Ni–Cr–AI–Mo system containing 60 and 50 at. –%Ni annealed at 1523 K. The experimental methods used mainly were electron microscopy, electron probe microanalysis, and X–ray diffraction. Four quaternary alloys were used, with compositions (at.–%) lying on a line between Ni60Al40 and Ni60Cr20Mo20,and one alloy containing 50Ni–28Cr–10AI-12Mo.The composition range was chosen to include the P–and σ –phases based on the Ni–Cr–Mo system. The phases involved in equilibria at 1523 K in the 60 at. –%Ni alloy series were γ (Ni–base solid solution), β (based on NiAI), Mo–base solid solution, and P; the 50 at. –%Ni alloy contained γ, β and σ. Partial isothermal sections of the quaternary system at 60 and 50 at. –%Ni have been determined. Eutectics containing either γ + P or γ + β + P were present

in the as–solidified 60 at. –%Ni alloys, while a γ + β + σ eutectic was present in the 50 at–%Ni alloy; some compositional data for eutectic phases were obtained by analytical transmission electron microscopy. High hardness values (from ~ 500 to 670 HV) were obtained in the as–solidified alloys.

MST/265  相似文献   

16.
The effect of Al addition on the microstructure and tensile properties of Ni3(Si,Ti) alloys with an L12 ordered structure, which were fabricated through thermomechanical processing from arc-melted ingots, was investigated. Al was added to a Ni3(Si,Ti) alloy by using two methods such that Al substituted for (1) only Ti and (2) both Ni and Ti along a Ni3(Si,Ti)-Ni3Al pseudo-binary line. In the case of the alloys prepared by the former method, the addition of more than 4 at.% Al resulted in a two-phase microstructure consisting of disordered fcc Ni solid solution dispersions in the L12 matrix, while in the case of the alloys prepared by the latter method, the addition of 4 at.% Al retained the L12 single-phase microstructure. In the case of the 4 at.% Al-added alloys, the room-temperature tensile properties were similar and independent of the alloying methods, whereas the high-temperature yield stress was higher in the alloys prepared by the latter method than in the case of the alloys prepared by the former method. These results suggest that a single-phase microstructure consisting of an entire L12 structure is favorable for obtaining high-temperature tensile properties.  相似文献   

17.
Abstract

The microstructure and the thermal stability of rapid solidified centrifugally atomised AI–3Cr–X (X=1Ni, 3Ni, 0·3Mo, 1Si, or 3Si, at.-%) powders were studied. Three main types of microstructure were observed in the powders: cellular, globular, and rosettelike. Some powders exhibited a mixture of these. In the atomised state the alloys usually had two phases, intermetallic Al13Cr2 and α-Al solid solution. Thermal stability was studied for a range of temperatures from 20 to 500°C. The phase Al3Ni appeared in the nickel containing alloys and grew upon heat treatment. The molybdenum containing alloy did not show any noticeable change upon heat treatment. With respect to the silicon containing alloys, the intermetallic Al13Cr2 transformed into Al13Cr4Si4 at high temperatures. On the basis of bibliographic information a nucleation map was calculated relating the prevalence of the intermetallic Al13Cr2 phase and the α-Al phase to the particle diameter and the chromium concentration of powder obtained by centrifugal atomisation.

MST/3273  相似文献   

18.
《Materials Letters》2005,59(24-25):3014-3017
Ni–SiC metal matrix composites with two kinds of SiC content were prepared by electroforming in a nickel sulphamate bath. Tensile strength and microstructure of the composites before and after heat treatment were investigated. The maximum of tensile strength was obtained after heat treatment at 300 °C × 24 h. The values were 641 N/mm2 and 701 N/mm2 respectively. The complete reaction between nickel and SiC particles can produce shrinkage pores in the interface. The volume of shrinkage pores was equal to 8% of the volume of SiC particles in the composites. The interfacial reaction products were composed of Ni3Si and a little amount of Ni31Si12 after heat treatment at 600 °C × 24 h. The fracture evolution went though microcracks initiation, growth and coalescence. Cracking of the matrix, debonding of Ni–SiC interfaces and cracking of particles were three types of cracking modes for Ni–SiC composites.  相似文献   

19.
In this study, Ti–Al–Nb, Ti–Ni–Nb and Ni–Cr–Nb system alloys were designed and incorporated in order to construct a gradient structure at the surface of the joined Ti3Al base material. And the Ti3Al-based alloy and Ni-based superalloy were successfully joined together using gas tungsten arc (GTA) welding technology. The microstructure evolution, mechanical properties and fractured behaviors of the joints were investigated. The gradient structure remarkably decreased the formation tendency of brittle phases within the joints compared with a single filler alloy and thus improved the joint strength effectively. The average room-temperature tensile strength of the Ti3Al/In718 dissimilar joint reached 353 MPa, and the strength value at 873 K was 245 MPa. At the Ti–Ni–Nb/Ni–Cr–Nb interface, some Ni3(Nb, Ti) + (Nb, Ti)Cr2 and TiNi3 phases were detected in the Ti–Ni–Nb matrix. It was believed that their presence decreased the room-temperature strength of the Ti–Ni–Nb alloy but improved its high-temperature strength.  相似文献   

20.
Nb–Si–Al–Ti quaternary phase diagram around three-phase region, which consists of niobium solid solution (Nbss), Nb3Al and Nb5Si3,is constructed in this study. The three-phase region exists up to titanium content of about 20 mol%. Based on the quaternary phase diagram, three-phase alloys containing Nbss from about 50 to 75% in volume are prepared to improve high temperature strength, room temperature fracture toughness and oxidation resistance simultaneously.

When microstructure and composition are optimized (Nbss + Nb3Al + Nb5Si3) three-phase alloy with the addition of titanium exhibits higher compressive strength than nickel-based superalloys at room temperature to 1573 K. Fracture toughness at room temperature of (Nbss + Nb3Al + Nb5Si3) three-phase alloys is increased to over 12 MPa m1/2 by the addition of titanium without sacrificing high temperature strength. Oxidation resistance of (Nbss + Nb3Al + Nb5Si3) three-phase alloys is improved by the addition of titanium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号