首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminium matrix composites with multiple reinforcements (hybrid AMCs) are finding increased applications because of improved mechanical and tribological properties and hence are better substitutes for single reinforced composites. Few investigations have been reported on the tribological behaviour of these composites with % reinforcement above 10%. The present study focuses on the influence of addition of graphite (Gr) particulates as a second reinforcement on the tribological behaviour of aluminium matrix composites reinforced with silicon carbide (SiC) particulates. Dry sliding wear tests have been performed to study the influence of Gr particulates, load, sliding speed and sliding distance on the wear of hybrid composite specimens with combined % reinforcement of 2.5%, 5%, 7.5% and 10% with equal weight % of SiC and Gr particulates. Experiments are also conducted on composites with % reinforcement of SiC similar to hybrid composites for the sake of comparison. Parametric studies based on design of experiments (DOE) techniques indicate that the wear of hybrid composites decreases from 0.0234 g to 0.0221 g as the % reinforcement increases from 3% to 7.5%. But the wear has a tendency to increase beyond % reinforcement of 7.5% as its value is 0.0225 g at.% reinforcement of 10%. This trend is absent in case of composites reinforced with SiC alone. The values of wear of these composites are 0.0323 g, 0.0252 g and 0.0223 g, respectively, at.% reinforcement of 3%, 7.5% and 10% clearly indicating that hybrid composites exhibit better wear characteristics compared to composites reinforced with SiC alone. Load and sliding distance show a positive influence on wear implying increase of wear with increase of either load or sliding distance or both. Whereas speed shows a negative influence on wear indicating decrease of wear with increase of speed. Interactions among load, sliding speed and sliding distance are noticed in hybrid composites and this may be attributed to the addition of Gr particulates. Such interactions are not present in composite reinforced with SiC alone. Mathematical models are formulated to predict the wear of the composites.  相似文献   

2.
Using very heterogeneous materials in structural parts submitted to cyclic loadings, this paper presents an elasto-plastic micromechanical model. After recalling the homogenisation principle based on a mean field theory, non-linear kinematic and isotropic strain hardening is introduced into the matrix. Validation is made on an Al–3.5%Cu/SiC particle composite, and an Al–Si7Mg/Al2O3 fibre composite is treated as a first application. Damage is introduced into the model using a fibre failure criterion. It is based on the evolution of the volume fraction of broken fibres as a function of the maximum principal stress in the fibre family. The damage law is identified by means of in situ tensile tests performed inside the scanning electronic microscope. The number of broken fibres is determined as a function of the applied load and the number of cycles. The model predicts the fatigue behaviour, the loss of stiffness, the volume fraction of broken fibres for different volume fractions, aspect ratios, distributions of orientation and distributions of strength of the fibres. The effect of the mechanical fatigue properties of the matrix is also studied.  相似文献   

3.
The sintering behaviour of alumina–Y-TZP composites prepared by slip-casting technique were studied. Slip-cast samples containing varying amounts of Y-TZP ranging up to 90 vol% were prepared and evaluated. Sintering studies were carried out at 1450°C to 1600°C. Sintered samples were characterised where appropriate to determine phases present, grain sizes, bulk density and mechanical properties. Good correlation was obtained between the calculated prepared powder density and experimental results. The sintered bulk density of the composites was observed to increase with increasing Y-TZP content and sintering temperature up to 1550°C. Maximum hardness values (>14 GPa) were obtained for all samples containing <60 vol% Y-TZP and when sintered at 1550°C. It has been found that the additions of up to 50 vol% Y-TZP was effective in suppressing Al2O3 grain growth.  相似文献   

4.
This study investigates the effect of Zn addition two-step behaviour in an Al–Mg–Si–Cu alloy. During pre-aging at 100°C for 3?h, the Zn can partition into clusters because of the strong Zn–Mg interaction, prompting the formation of clusters. During subsequent artificial aging at 180°C for up to 240?min (peak hardness condition), the Zn does not significantly partition into clusters or precipitates, and the majority of Zn remains in the Al matrix. However, the presence of Zn in the matrix stimulates the transformation from clusters to GP zones to β′′ phases. The enhanced formation of GP zones and β′′ phases correlates well with the remarkable age-hardening response.  相似文献   

5.
Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters. The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30 vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3 μm. The extruded composites have been evaluated based on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion and a precipitation hardening treatment. For the extrusion step optimized processing parameters have been determined as: (i) extrusion temperature = 500 °C–560 °C; (ii) extrusion rate = 5 mm/s; (iii) extrusion ratio = 10:1.  相似文献   

6.
Abstract

Electron probe microanalysis showed that Al–7Mg–Cu alloys possess serious segregation tendencies. The addition of copper promoted the segregation of magnesium and led to the formation of non-equilibrium eutectic. With an increase in the copper content of the alloys, the severity of the solute segregation increased. Homogenisation reduced the solute segregation significantly. During homogenisation, the non-equilibrium eutectic compound AlxCuyMgz gradually dissolved. Its dissolution behaviour depended on its copper content. Precipitates of AlxCuyMgz with a comparatively low level of copper dissolved, while those with a high level of copper were less soluble and became divided into small blocks. The higher the copper content of the alloys, the larger and the greater in number the remaining AlxCuyMgz particles. In the undissolved AlxCuyMgz, the concentration of copper increased and that of magnesium decreased. Two step homogenisation reduced the solute segregation and dissolved the non-equilibrium eutectic further.

MST/3194  相似文献   

7.
In the present study, the microstructure, mechanical and wear properties of AXJ530 alloy under different solidification condition were investigated. AXJ530 alloys were cast in a multi-step permanent mould casting (PMC) with five different cooling rates, and also in high pressure die casting (HPDC). The effect of cooling rate was determined for the room temperature mechanical properties and the dry sliding wear resistance of the AXJ530 alloys. The results showed that grain size of AXJ530 alloy was refined and thinner lamellar eutectic phase formed at higher cooling rate. It was concluded that these changes led to the observed concurrent increases in ultimate tensile strength (σuts), yield strength (σ0.2) and elongation (δ) of the AXJ530 alloy. The relationship between grain size and yield strength/hardness agreed with Hall–Patch behavior. The dry sliding wear rate of the PMC specimens decreased with increasing of cooling rate, but micro-porosity/inclusion in the HPDC specimen decreased its wear resistance properties. Abrasion was determined to be the dominant wear mechanism for the AXJ530 alloys.  相似文献   

8.
Al–15 wt.% Mg2Si composites were prepared by in situ casting and characterized in wear tests. Previous to the extrusion of specimens at 470 °C – varying extrusion ratio (7.4, 14.1 and 25), the as-cast composites were homogenized at 500 °C for 5 h, followed by slow furnace cooling. The microstructure, hardness and sliding wear behavior were characterized for both, the as-cast and hot extruded composites. Results show that increasing the extrusion ratio causes a significant improvement in hardness and wear resistance. This is ascribed to the observed decrease in average size and better distribution of Mg2Si particles, in tandem with a remarkable decrease in porosity percentages, which goes from 5.63 in the as-cast condition, to 0.47 at the extrusion ratio of 25. It was found that abrasion is the dominant wear mechanism in all extruded composites, whilst a combination of adhesion and delamination appears to be the governing mechanism for as-cast composites.  相似文献   

9.
Abstract

Effect of discharging frequency of low voltage pulsed magnetic field (LVPMF) on the morphology and size of eutectic Si in eutectic Al–Si (Al–12Si) alloys has been investigated, and some characteristic parameters the characterised the microstructure of the eutectic Si phase were obtained. Dry sliding wear behaviour of eutectic Al–Si alloys without and with LVPMF treatment were also tested using a pin-on-disc wear testing machine, and scanning electron microscopy and energy dispersive spectroscopy X-ray of worn surfaces were carried out to determine the governing mechanisms in the eutectic Al–Si alloys without and with LVPMF treatment. The results show that the eutectic Si became smaller with the increase in discharging frequency. Fine short rod-like or rounded particle-like eutectic silicon with 2·3 μm in length, 0·6 μm in the width, and 3·8 in aspect ratio was formed in eutectic Al–Si alloy treated by 6 Hz LVPMF. The wear resistance of eutectic Al–Si alloys increased with the increase in discharging frequency. The adhesive wear was observed in eutectic Al–Si alloy without LVPMF treatment under normal load of 80 N. However, mainly abrasive was observed in eutectic Al–Si alloy with 6 Hz LVPMF treatment.  相似文献   

10.
The influence of yttrium on the microstructure and corrosion behaviour of as-cast Mg–8Li–3Al–2Zn–xY alloys was investigated. The results show that Y addition leads to the formation of Al2Y particles and the transformation of α-Mg from the long needle-like to the round-like. The noble Al2Y particles on the grain boundary inhibit the galvanic corrosion between β-Li phase and α-Mg phase, and also weaken the corrosion occurrence inside β-Li phase due to the decrease of the AlLi phase. With Y addition, the corrosion resistance is improved gradually, especially when the content of Y is up to 1.5 wt-%. Moreover, Y addition makes the corrosion film become more compact, which can prevent the base materials from being attacked continuously.  相似文献   

11.
In order to understand the effect of Mo alloying on the microstructural evolution of TiAl alloy, the as-cast microstructure, heat treated microstructure characteristic, and hot compression microstructure evolution of Ti-44 A1 alloy have been studied in this work. The as-cast microstructure morphology changes from(γ+α_2)lamellar colony and β/β_0+γ mixture structure to β/β_0 phase matrix widmannstatten structure,when Mo content increases from 2 at.% to 6 at.%. Affected by the relationship between β phase and αphase, the angles between the lamellar orientation and the block β/β_0 phase are roughly at 0°, 45° and90°. Comparing with heat treatment microstructure, the hot compression microstructure contains lessβ/β_0 phase, however, the β/β_0 phase containing 2 Mo alloy and 3 Mo alloy hot compressed at 1275 ℃ has the inverse tendency. In addition,(α_2 +γ) colony is decomposed by the discontinuous transformation.  相似文献   

12.
In the present study effect of deflocculants like P-Aminobenzoic Acid (PABA) and Cetyltrimethyl ammonium bromide (CTAB) on densification and hardness of 3 mol.% Yttria-stabilized ZrO2 (abridged as YSZ) + Al2O3 (whiskers or particulates) composite have been studied. Maximum hardness & density were achieved at 1 wt% of CTAB or PABA, while further addition (5, 10 and 15 wt%) had no significant affect on the aforementioned properties. It was also observed that alumina addition in form of particulates only improved the density while its addition in form of whiskers significantly increased the hardness of YSZ + alumina composite. The maximum hardness achieved was more than 14 GPa in case of sample containing alumina in form of whiskers.  相似文献   

13.
Particulate reinforced Al-MMCs exhibits better mechanical properties and improved wear resistance over other conventional alloys. In the present paper, the experimental results of the mechanical and tribological properties of Al6061–SiC composites are presented. The composites of Al6061 containing 2–6 wt% SiC were prepared using liquid metallurgy route. The experimental results showed that the density of the composites increase with increased SiC content and agrees with the values obtained through the rule of mixtures. The hardness and ultimate tensile strength of Al6061–SiC composites were found to increase with increased SiC content in the matrix at the cost of reduced ductility. The wear properties of the composites containing SiC were superior to that of the matrix material.  相似文献   

14.
Abstract

Metal matrix composites are considered as a distinct category of the advanced materials, which have low weight, high strength, high modulus of elasticity, low thermal expansion coefficient and high wear resistance. Among them, Al–Al2O3 composites have achieved significant attention due to their desired properties. In the present research, Al–Al2O3 composites with 5 vol.-% alumina were produced by stir casting at a temperature of 800°C. Two different particle sizes of alumina were used as 53–63 and 90–105 μm. The microstructure of the samples was evaluated by SEM. In addition, the mechanical properties of the samples were measured, and hence, the optimum temperature and particle size of alumina to be added to the Al matrix were determined. The results demonstrated the positive effect of alumina on improving the properties of Al–Al2O3 composites.  相似文献   

15.
The present investigation aims to evaluate the effect of sliding distance on the wear and friction behavior of as cast and heat-treated Al–SiCp composites using pin-on-disc wear testing machine, giving emphasis on the parameters such as wear rate and coefficient of friction as a function of sliding distance (0–5000 m) at different applied pressures of 0.2, 0.6, 1.0 and 1.4 MPa, and at a fixed sliding speed of 3.35 m/s. Characterizing the alloy and composites in terms of microstructure, X-ray diffraction analysis, microhardness and wear surface analysis. The results revealed that the heat-treated composite exhibited superior wear properties than the base alloy, while the coefficient of friction followed an opposite trend. Moreover, the wear rate of the composite is noted to be invariant to the sliding distance and increased with applied pressures. Microstructure of composite shows fairly uniform distribution of SiC particles in the metallic matrix. The hardness value of heat-treated composite increased 20–30% by addition of SiC particles to the alloy, intermetallic phases like Al2Mg3 and Al2CuMg, etc., were obtained from X-ray analysis. The wear mechanism of the investigated materials was studied through worn surfaces examination of the developed wear tracks.  相似文献   

16.
Mg–xAl–2Ca–2Sm (x?=?3, 5, 9 and 15) alloys were tested using an ‘L’-shaped sand mould serving as a hot tearing testing system. The experimental results showed that the solidification range of the Mg–xAl–2Ca–2Sm alloys first decreased and then increased as the Al content was increased. Furthermore, by increasing the Al content, the dendritic arms of the α-Mg phase become more developed, and the hot tearing tendency of the Mg–xAl–2Ca–2Sm alloys increased. In addition, the variety of precipitated phases was seen to be affected by the Al content and the tendency for hot tearing depended on the precipitated phase. The tendency of the Mg–xAl–2Ca–2Sm alloys for hot tearing first decreased and then increased with increasing Al content.  相似文献   

17.
《Materials Letters》2003,57(22-23):3439-3443
Seven samples of Al2O3–30 wt.% TiC composites were prepared by hot-pressing the Al2O3 powder mixed with TiC particles of different particle sizes. Knoop and Vickers hardness measurements were conducted on these samples, respectively, in the indentation load range from 1.47 to 35.77 N. The load-independent hardness numbers were then determined by analyzing the relationship between the measured indentation size and the applied indentation load. It was found that the load-independent hardness number increases with the increasing TiC particle size, and this experimental phenomenon may be attributed to the effect of the residual internal stress resulting from the mismatch between the thermal expansion of Al2O3 matrix and that of the TiC particles.  相似文献   

18.
AZ91 alloy matrix composites are synthesized by in situ reactive formation of hard MgO and Al2O3 particles from the addition of magnesium nitrate to the molten alloy. The evolved oxygen from decomposition of magnesium nitrate reacts with molten magnesium to form magnesium oxide and with aluminium to form aluminium oxide. Additionally, these newly formed oxides react with each other to form MgAl2O4 spinel. Application of ultrasonic vibrations to the melt increased the uniformity of particle distribution, avoided agglomeration, and decreased porosity in the castings. Ultrasound induced physical phenomena such as cavitation and melt streaming promoted the in situ chemical reactions. Well dispersed, reactively formed hard oxides increased the hardness, ultimate strength, and strain-hardening exponent of the composites. Presence of well-dispersed hard oxide particles and stronger interface resulting from cavitation-enhanced wetting of reactively formed particles in the AZ91 alloy matrix improved the sliding wear resistance of the composites.  相似文献   

19.
The influence of Zn addition (0, 0.5, 1.5, 4.0 and 6.0 wt.%) on hot tearing behaviour of Mg–0.5 wt.% Ca alloy was investigated using a constrained rod casting (CRC) apparatus. The effects of mould temperature and grain refinement on the hot tearing susceptibility (HTS) were studied. Hot tears were observed with 3D X-ray tomography and the tear volumes were quantified. Results show that the Zn addition increases the HTS of Mg–0.5Ca alloys. At a mould temperature of 250 °C, all alloys investigated except Mg–0.5Ca–6Zn alloy show severe HTS. An increase in the mould temperature from 250 °C to 450 °C did not reduce the HTS in Mg–0.5Ca–1.5Zn and Mg–0.5Ca–4Zn alloys. Among all the investigated alloys, Mg–0.5Ca–4Zn alloy exhibits severe HTS as it completely broke away from the sprue–rod junction. The HTS of alloys was well correlated with the susceptible temperature range (ΔTs). An increase in ΔTs increased the HTS. The hot tears propagated along the grain boundaries through liquid film rupture. Grain refinement by Zr addition improved the hot tearing resistance of Mg–0.5Ca–4Zn alloy as the fine grain structure facilitated the easy feeding of liquid into the last area of solidification and accommodated the developed strain more effectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号