首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acidifying activity of Carnobacterium maltaromaticum LMA28, a strain isolated from French soft cheese, was studied in trypticase soy broth with yeast extract (TSB-YE) medium and in milk. In TSB-YE supplemented with lactose, glucose, or galactose, lactose and glucose were metabolized with a maximum growth rate of 0.32 h−1 and galactose was not metabolized. During hydrolysis of lactose, the galactose moiety was not excreted. The major product was l(+) lactic acid, with no significant difference in the lactic acid yield. Glucose was not completely metabolized because cell growth stopped when pH values reached an average of 5.0. In sterilized UHT milk, the addition of 1 g/L of YE enhanced its coagulation. Compared with commercial starter lactic acid bacteria such as Lactococcus lactis DSMZ 20481 or Streptococcus thermophilus INRA 302, Carnobacterium maltaromaticum LMA 28 was shown to be a slow acidifying strain. However, in spite of this weak acidifying ability, C. maltaromaticum LMA 28 can sustain low pH values in coculture with Lc. lactis DSMZ 20481 or S. thermophilus INRA 302. The individual and interactive effects of initial pH values (5.2 to 8.0) and incubation temperatures (23 to 37°C) on acidifying activity were studied by response surface methodology. The 3 strains displayed different behaviors depending on pH and temperature. The psychrotrophic lactic acid strain C. maltaromaticum LMA 28 was able to grow at alkaline pH values and during storage conditions. It could be used as a potential ripening flora in soft cheese.  相似文献   

2.
Minimally processed refrigerated ready-to-eat fishes may offer health risk of severe infection to susceptible individuals due to contamination by the psychrotolerant bacterium L. monocytogenes. In this work, inhibition of L. monocytogenes by a plant extract and lactic acid bacteria (LAB) was studied in model fish systems kept at 5 °C for 35 days. For that, fillets of tropical fish “surubim” (Pseudoplatystoma sp.) and hydroalcoholic extract of the plant Lippia sidoides Cham. (“alecrim pimenta”) were used. Fish peptone broth (FPB), “surubim” broth and “surubim” homogenate were inoculated with combinations of L. monocytogenes and bacteriocin-producing Carnobacterium maltaromaticum (C2 and A9b+) and non bacteriocin-producing C. maltaromaticum (A9b-), in the presence or absence of extract of “alecrim pimenta” (EAP). In all model systems, monocultures of L. monocytogenes and carnobacteria reached final populations ≥ 108 CFU/ml after 35 days, except for L. monocytogenes in “surubim” homogenate (104 CFU/ml). In FPB, EAP alone and combined with cultures of LAB inhibited L. monocytogenes but carnobacteria without EAP were only weakly antilisterial. In “surubim” broth, EAP alone did not prevent L. monocytogenes growth but cultures of carnobacteria combined or not with EAP inhibited L. monocytogenes, with more pronounced effect being observed for C. maltaromaticum C2, which produced bacteriocin. In “surubim” homogenate, EAP alone and combined with cultures of C. maltaromaticum A9b and A9b+ were strongly inhibitory to L. monocytogenes, while C. maltaromaticum C2 with EAP caused transient inhibition of L. monocytogenes. No significant inhibition of L. monocytogenes was observed for carnobacteria in “surubim” homogenate without EAP. In conclusion, it was observed that the use of EAP and cultures of carnobacteria have potential to inhibit L. monocytogenes in fish systems and the applications should be carefully studied, considering the influence of food matrix.  相似文献   

3.
Two model antilisterial microbial communities consisting of two yeasts, two Gram positive and two Gram negative bacteria, and originating from Livarot cheese smear were previously designed. They were used in the present study to analyse the impact of microbial population dynamics on growth of Listeria monocytogenes in cheese microcosm. Specific culture media and PCR primers were developed for simultaneous culture-dependent and real-time PCR quantification of strains belonging to Marinomonas sp., Paenibacillus sp., Staphylococcus equorum, Arthrobacter arilaitensis, Pseudomonas putida, Serratia liquefaciens, Candida natalensis, and Geotrichum candidum, in cheese microcosms. All strains were enumerated after 3, 5, 8 and 14 days at 15 °C. They established well at high counts in all cheese microcosms. Growth dynamics for all strains in presence of L. monocytogenes WSLC 1685 were compared to those of microbial communities obtained by omitting in turn one of the six members of the initial community. The growth of the microbial strains was neither markedly disturbed by Listeria presence nor by the removal of each strain in turn. Furthermore, these communities had a significant reducing effect on growth of L. monocytogenes independently of pH, as confirmed by mathematical modelling. A barrier effect was observed, that could be explained by specific competition for nutrients.  相似文献   

4.
Carnobacterium maltaromaticum is a non-starter lactic acid bacterium frequently isolated from food products. While this bacterium has been extensively studied in foods, very little is known about its fate once ingested. In this study the strain C. maltaromaticum LMA 28 was given to mice by intragastric gavage. Selective enumeration of C. maltaromaticum in the faeces showed that the bacterium is able to survive through transit of the gut. In addition, experiments showed that C. maltaromaticum is able to adhere to Caco-2, HT29, and T84 cell lines. Moreover, the measurement of four cytokines produced by human peripheral blood mononuclear cells after incubation with the bacterium suggested that C. maltaromaticum LMA 28 exhibit either a neutral or a slightly anti-inflammatory behaviour. The analysis of the genome of C. maltaromaticum LMA 28 revealed it contains genes for adaptation to the gastrointestinal tract.  相似文献   

5.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

6.
Lactobacillus (Lb.) plantarum ST71KS was isolated from homemade goat feta cheese and identified using biochemical and molecular biology techniques. As shown by Tricine-SDS-PAGE, this lactic acid bacterium produces a bacteriocin (ST71KS) with an estimated molecular weight of 5.0 kDa. Bacteriocin ST71KS was not affected by the presence of α-amylase, catalase and remained stable in a wide range of pH and after treatment with Triton X-100, Triton X-114, Tween 20, Tween 80, NaCl, SDS, urea and EDTA. This bacteriocin also remained active after being heated at 100 °C for 2 h and even after 20 min at 121 °C; however, it was inactivated by proteolitic enzymes. Production of bacteriocin ST71KS reached 6400 AU/mL during stationary growth phase of Lb. plantarum cultivated in MRS at 30 °C and 37 °C. Bacteriocin ST71KS displayed a bactericidal effect against Listeria monocytogenes strains 603 and 607 and did not adsorb to the producer cells. Lb. plantarum ST71KS harbors two bacteriocin genes with homology to plantaricin S and pediocin PA-1. These characteristics indicate that bacteriocin ST71KS is a class IIa bacteriocin. The peptide presented no toxic effect when tested in vitro with kidney Vero cells, indicating safe technological application to control L. monocytogenes in foods.  相似文献   

7.
The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes.  相似文献   

8.
Previous study showed that repetitive mild decontamination treatments with intense light pulses (ILP) and lactic acid (LA) can induce increased resistance in surviving pathogenic cells. Research has evaluated the potential of increased resistance to enhance the persistence of resistant variants of Listeria monocytogenes and Escherichia coli O157:H7 under suboptimal growth conditions. Growth of resistant variants and parental strains was determined by optical density (OD) measurements in nutrient broths with different pH values and NaCl concentration, at low temperature. The real lag phase was calculated, and results indicated that intense light pulses (ILP) resistant variants needed longer time to initiate growth compared to their parental strains, for both L. monocytogenes and E. coli O157:H7 when incubated at 7 °C and 10 °C, respectively. These selected variants were of the similar resistance towards heat and low pH (no cross-tolerance). Nevertheless, lactic acid (LA) resistant variant of L. monocytogenes was cross-protected when exposed to low pH, but not when treated with heat.  相似文献   

9.
The aim of this study was to survey the presence of Staphylococcus aureus and Listeria monocytogenes during the cheese making process in small-scale raw milk cheese production in Norway.The prevalence of S. aureus in bovine and caprine raw milk samples was 47.3% and 98.8%, respectively. An increase in contamination during the first 2-3 h resulted in a 73.6% prevalence of contamination in the bovine curd, and 23 out of 38 S. aureus-negative bovine milk samples gave rise to S. aureus-positive curds. The highest contamination levels of S. aureus were reached in both caprine and bovine cheese after 5-6 h (after the first pressing). There was no contamination of L. monocytogenes in caprine cheeses and only one (1.4%) contaminated bovine cheese.This work has increased our knowledge about S. aureus and L. monocytogenes contamination during the process of raw milk cheese production and gives an account of the hygiene status during the manufacture of Norwegian raw milk cheeses.  相似文献   

10.
Enterococcus faecium WHE 81, a multi-bacteriocin producer, was tested for its antimicrobial activity on Listeria monocytogenes in Munster cheese, a red smear soft cheese. The naturally delayed and superficial contamination of this type of cheese allowed the use of E. faecium WHE 81 at the beginning of the ripening as a surface culture. A brine solution inoculated at 105 CFU of E. faecium WHE 81 per mL was sprayed on the cheese surface during the first smearing operation. On day 7, smearing of cheese samples with a brine solution at 102 CFU of L. monocytogenes per mL yielded initial cell counts of approximately 50 CFU g−1 of the pathogen on the cheese surface. Although, in some instances, L. monocytogenes could survive (<50 CFU g−1) in the presence of E. faecium WHE 81, it was unable to initiate growth. In control samples however, L. monocytogenes counts often exceeded 104 CFU g−1. In other respects, E. faecium WHE 81, which naturally existed in Munster cheese, did not adversely impact on the ripening process.  相似文献   

11.
The behaviour of Listeria monocytogenes in a processed cheese product was evaluated over time by inoculating the product with three different L. monocytogenes strains (Scott A, CA and a strain isolated from processed cheese) at three different inoculation levels (ca. 6 × 105, ca. 6 × 103 and 102 CFU/g of cheese or less) and after storage of the contaminated products at 4, 12 or 22 °C. Growth of L. monocytogenes was not observed in any of the experimental trials (experiments involving different combinations of strain, inoculum level and storage temperature) throughout the storage period. L. monocytogenes populations decreased over time with a rate that was strain- and storage temperature-dependent. Nonetheless, for cheeses that had been inoculated with the higher inoculum and stored at 4 °C viable populations of L. monocytogenes could be detected for up to nine months post-inoculation. The L. monocytogenes survival curves obtained from the different trials were characterised by a post-inoculation phase during which the populations remained essentially unchanged (lag phase) followed by a phase of logarithmic decline. The duration of the lag phase and the rate of inactivation of L. monocytogenes in the different trials were estimated based on data from the linear descending portions of the survival curves. In addition, a non-linear Weibull-type equation was fitted to the data from each survival curve with satisfactory results. The results of the present study emphasize that, according to the definition laid down in the European Union Regulation 1441/2007, the processed cheese product tested in this work should be considered and classified as one that does not support the growth of L. monocytogenes under reasonable foreseeable conditions of distribution and storage. However, post-processing contamination of the product should be austerely avoided as the pathogen can survive in the product for extended periods of time, particularly under refrigerated storage (4 °C).  相似文献   

12.
13.
The aims of this study were to (i) compare the inhibitory effects of the natural microflora of different foods on the growth of Listeria monocytogenes during enrichment in selective and non-selective broths; (ii) to isolate and identify components of the microflora of the most inhibitory food; and (iii) to determine which of these components was most inhibitory to growth of L. monocytogenes in co-culture studies. Growth of an antibiotic-resistant marker strain of L. monocytogenes was examined during enrichment of a range of different foods in Tryptone Soya Broth (TSB), Half Fraser Broth (HFB) and Oxoid Novel Enrichment (ONE) Broth. Inhibition of L. monocytogenes was greatest in the presence of minced beef, salami and soft cheese and least with prepared fresh salad and chicken pâté. For any particular food the numbers of L. monocytogenes present after 24 h enrichment in different broths increased in the order: TSB, HFB and ONE Broth. Numbers of L. monocytogenes recovered after enrichment in TSB were inversely related to the initial aerobic plate count (APC) in the food but with only a moderate coefficient of determination (R2) of 0.51 implying that microbial numbers and the composition of the microflora both influenced the degree of inhibition of L. monocytogenes. In HFB and ONE Broth the relationship between APC and final L. monocytogenes counts was weaker. The microflora of TSB after 24 h enrichment of minced beef consisted of lactic acid bacteria, Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and enterococci. In co-culture studies of L. monocytogenes with different components of the microflora in TSB, the lactic acid bacteria were the most inhibitory followed by the Enterobacteriaceae. The least inhibitory organisms were Pseudomonas sp., enterococci and B. thermosphacta. In HFB and ONE Broth the growth of Gram-negative organisms was inhibited but lactic acid bacteria still reached high numbers after 24 h. A more detailed study of the growth of low numbers of L. monocytogenes during enrichment of minced beef in TSB revealed that growth of L. monocytogenes ceased at a cell concentration of about 102 cfu/ml when lactic acid bacteria entered stationary phase. However in ONE Broth growth of lactic acid bacteria was slower than in TSB with a longer lag time allowing L. monocytogenes to achieve much higher numbers before lactic acid bacteria reached stationary phase. This work has identified the relative inhibitory effects of different components of a natural food microflora and shown that the ability of low numbers of L. monocytogenes to achieve high cell concentrations is highly dependent on the extent to which enrichment media are able to inhibit or delay growth of the more effective competitors.  相似文献   

14.
Several strains of Enterococcus spp. are capable of producing bacteriocins with antimicrobial activity against important bacterial pathogens in dairy products. In this study, the bacteriocins produced by two Enterococcus strains (Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch), isolated from cheeses, were characterized and tested for their capability to control growth of Listeria monocytogenes 426 in experimentally contaminated fresh Minas cheese during refrigerated storage. Both strains were active against a variety of pathogenic and non-pathogenic microorganisms and bacteriocin absorption to various L. monocytogenes, Enterococcus faecalis ATCC 19443 and Lactobacillus sakei ATCC 15521 varied according to the strain and the testing conditions (pH, temperature, presence of salts and surfactants). Growth of L. monocytogenes 426 was inhibited in cheeses containing E. mundtii CRL35 up to 12 days at 8 °C, evidencing a bacteriostatic effect. E. faecium ST88Ch was less effective, as the bacteriostatic affect occurred only after 6 days at 8 °C. In cheeses containing nisin (12.5 mg/kg), less than one log reduction was observed. This research underlines the potential application of E. mundtii CRL35 in the control of L. monocytogenes in Minas cheese.  相似文献   

15.
16.
In this study, a microbiological challenge test in three artificially contaminated retail mixed mayonnaise-based ready-to-eat salads stored at refrigerator temperatures (3 °C and 7 °C) for 48 h was carried out. Shrimp-tomato salad, smoked ham salad and garlic cheese salad were separately contaminated by a suspension of particular Listeria monocytogenes strains. The number of L. monocytogenes, Enterobacteriaceae, staphylococci and total plate count (CFU/g) was determined. Listeria monocytogenes growth potential in the salads was calculated and evaluated.A significant increase in total plate count and L. monocytogenes count throughout storage of all three investigated salads was found. Enterobacteriaceae levels were high at the beginning in all salads but significantly (p < 0.05) decreased throughout the experiment depending on the temperature.All investigated L. monocytogenes strains demonstrated growth at both temperatures but expressed different growth potential. Especially garlic cheese salad and smoked ham salad were able to support the growth of Listeria. Shrimp-tomato salad supported growth the least. The growth potential increased with the increasing temperature and exceeded 0.5 log10 CFU/g in many cases. If the potential for growth is > 0.5 log10 CFU/g, food products can potentially endanger human health. Reference strain (ATCC 7644) showed the least growth potential almost in all cases in comparison with strains isolated from frozen pollock loins and from thermally treated specialty sausage containing preservatives. To eliminate the occurrence of microbiological risks, the shelf-life of the studied salads was estimated.  相似文献   

17.
We hypothesized that genomic regions specific to Listeria monocytogenes or selected L. monocytogenes strains may contribute to virulence and phenotypic differences among the strains. A whole genome alignment of two completed L. monocytogenes genomes and the one completed Listeria innocua genome initially identified 28 genomic regions of difference (RD) > 4 kb that were found in one or both L. monocytogenes genomes, but absent from the non-pathogenic L. innocua. In silico analyses using an additional 18 draft L. monocytogenes genomes showed that (i) 15 RDs were found in all or most L. monocytogenes genomes; (ii) three RDs were found in all or most lineage I genomes, but absent from lineage II genomes; and (iii) four RDs were found in all lineage II genomes, but no lineage I genomes. Null mutants in two L. monocytogenes-specific RDs (RD16 and RD30; found in most L. monocytogenes) and the lineage II-specific RD25 showed no evidence for impaired invasion or intracellular growth in selected tissue culture cells. Although, in pH 5.5 minimal media, the ΔRD30 null mutant showed reduced ability to compete with its parent strain, indicating that RD30 may have a role in L. monocytogenes growth under limited nutrient conditions at acidic pH.  相似文献   

18.
Carnobacterium species constitute a genus of Lactic Acid Bacteria (LAB) present in different ecological niches. The aim of this article is to summarize the knowledge about Carnobacterium maltaromaticum species at different microbiological levels such as taxonomy, isolation and identification, ecology, technological aspects and safety in dairy products. Works published during the last decade concerning C. maltaromaticum have shown that this non-starter LAB (NSLAB) could present major interests in dairy product technology. Four reasons can be mentioned: i) it can grow in milk during the ripening period with no competition with starter LAB, ii) this species synthesizes different flavouring compounds e.g., 3-methylbutanal, iii) it can inhibit the growth of foodborne pathogens as Listeria monocytogenes due to its ability to produce bacteriocins, iv) it has never been reported to be involved in human diseases as no cases of human infection have been directly linked to the consumption of dairy products containing this species.  相似文献   

19.
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5°C, respectively). In cheese inoculated with 4 log10 cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log10 cfu/g in all treatments over 60 d. When inoculated with 5 log10 cfu/g at 3 mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4°C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12°C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.  相似文献   

20.
This study examined the growth characteristics of Listeria monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora, consisting of Brochothrix spp., isolated from cooked meat were inoculated alone (monocultured) or co-inoculated (co-cultured) onto cooked ham slices. The growth characteristics, lag phase duration (LPD, h), growth rate (GR, log10 cfu/h), and maximum population density (MPD, log10 cfu/g), of L. monocytogenes and the native microflora in vacuum-packed ham slices stored at 4, 6, 8, 10, and 12 °C for up to 5 weeks were determined. At 4-12 °C, the LPDs of co-cultured L. monocytogenes were not significantly different from those of monocultured L. monocytogenes in ham, indicating the LPDs of L. monocytogenes at 4-12 °C were not influenced by the presence of the native microflora. At 4-8 °C, the GRs of co-cultured L. monocytogenes (0.0114-0.0130 log10 cfu/h) were statistically but marginally lower than those of monocultured L. monocytogenes (0.0132-0.0145 log10 cfu/h), indicating the GRs of L. monocytogenes at 4-8 °C were reduced by the presence of the native microflora. The GRs of L. monocytogenes were reduced by 8-7% with the presence of the native microflora at 4-8 °C, whereas there was less influence of the native microflora on the GRs of L. monocytogenes at 10 and 12 °C. The MPDs of L. monocytogenes at 4-8 °C were also reduced by the presence of the native microflora. Data from this study provide additional information regarding the growth suppression of L. monocytogenes by the native microflora for assessing the survival and growth of L. monocytogenes in ready-to-eat meat products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号