首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last two decades several foodborne disease outbreaks associated with produce were reported. Tomatoes, in particular, have been associated with several multi-state Salmonella outbreaks. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on whole Roma tomato surfaces by X-ray at 0.1, 0.5, 0.75, 1.0, and 1.5 kGy was studied. The main purpose of this study was to achieve a 5 log reduction in consistent with the recommendations of the National Advisory Committee on Microbiological Criteria for Foods. Moreover, the effect of X-ray on inherent microflora (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated Roma tomatoes, during storage at ambient temperature (22 °C) for 20 days was also determined. Mixtures of three or two strains of each tested organism was spot inoculated (100 μl) onto the surface of Roma tomatoes (approximately 7–9 log per tomato), separately, and air-dried, followed by treatment with X-ray doses at 22 °C and 55–60% relative humidity. Surviving bacterial populations on tomato surfaces were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Treatment with X-ray significantly reduced the population of the tested pathogens on whole Roma tomato surfaces, compared with the control. Approximately 4.2, 2.3, 3.7 and 3.6 log CFU reduction of E. coli O157:H7, L. monocytogenes, S. enterica and S. flexneri per tomato were achieved by treatment with 0.75 kGy X-ray, respectively. More than a 5 log CFU reduction per tomato was achieved at 1.0 or 1.5 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the inherent microflora on Roma tomatoes. Inherent levels were significantly (p < 0.05) lower than the control sample throughout storage for 20 days.  相似文献   

2.
This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤ 1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤ 4.5 and ≤ 3.9 log CFU/g. Log reductions of ≤ 4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.  相似文献   

3.
This study determined the efficacy of actinidin and papain on reducing Listeria monocytogenes and three mixed strains of Escherichia coli O157:H7 populations on beef. The average reduction of E. coli O157:H7 was greater than that of L. monocytogenes and higher concentrations of either protease yielded greater reduction in bacterial populations. For instance, actinidin at 700 mg/ml significantly (p ≤ 0.05) reduced the population of L. monocytogenes by 1.49 log cfu/ml meat rinse after 3 h at 25 & 35 °C, and by 1.45 log cfu/ml rinse after 24 h at 5 °C, while the same actinidin concentration significantly reduced the populations of three mixed strains of E. coli O157:H7 by 1.81 log cfu/ml rinse after 3 h at 25 & 35 °C, and 1.94 log cfu/ml rinse after 24 h at 5 °C. These findings suggest that, in addition to improving the sensory attributes of beef, proteolytic enzymes can enhance meat safety when stored at suitable temperatures.  相似文献   

4.
We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24 h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24 h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1 h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments.  相似文献   

5.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

6.
Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus in vitro were investigated. Cranberry concentrate at various concentrations was prepared in distilled water (DW) or Brain Heart Infusion (BHI) broth. Pathogens were inoculated in each sample and incubated at 21 and 4 °C for 0, 1, 5, 7, and 24 h (DW samples) and 0, 1, 3, and 5 days (BHI samples). Transmission electron microscopy (TEM) was used to study the effects of cranberry concentrate on cellular structure of pathogens. DW results showed that S. Typhimurium and L. monocytogenes were reduced to non-detectable levels at 5 h in 100 μl/ml treatment at 21 and 4 °C. At 24 h, no target pathogens were detected from the 100 μl/ml treatment. BHI data indicated that the 100 μl/ml treatment reduced the four pathogens by 3-8 log CFU/ml compared with the control on Day 5 at 21 and 4 °C. TEM revealed damage to the bacterial cell walls and membranes. Cranberry concentrate has antibacterial effects on the four foodborne pathogens. Based on potential health benefits and proven antimicrobial effects, American cranberry concentrate may have dual applications as a food preservative.  相似文献   

7.
Alfalfa sprouts contaminated with Salmonella and Escherichia coli O157:H7 have been implicated in several outbreaks of foodborne illnesses in recent years. The seed used for sprouting appears to be the primary source of pathogens. Seed decontamination prior to sprouting presents a unique challenge for the sprouting industry since cells of the pathogenic survivors although undetectable after sanitizing treatments, can potentially multiply back to hazardous levels. The focus of this study was to therefore test the efficacy of high hydrostatic pressure to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Pressure treatment of 600 MPa for up to 25 min at 20 °C could not result in complete inactivation of Salmonella. High-pressure treatment was then carried out either at sub-ambient (4 °C) or elevated (40, 45 and 50 °C) temperatures to test the ability of high pressure to eliminate Salmonella. Pressure treatment at 4 and 20 °C did not deliver any satisfactory inactivation of Salmonella while high pressure at elevated temperatures achieved complete kill. Pre-soaking seeds prior to high-pressure treatment also enhanced pressure inactivation of Salmonella but at the expense of seed viability. High-pressure treatment of 500 MPa for 2 min at 45 °C was able to eliminate wild-type Salmonella and E. coli O157:H7 strains without bringing about any appreciable decrease in the seed viability.  相似文献   

8.
Consumption of fecally contaminated green onions has been implicated in several major outbreaks of foodborne illness. The objectives of this study were to investigate the survival and growth of Salmonella and Escherichia coli O157:H7 in green onions during storage and to assess the application of high hydrostatic pressure (HHP) to decontaminate green onions from both pathogens. Bacterial strains resistant to nalidixic acid and streptomycin were used to inoculate green onions at low (∼1 log cfu/g) and high (∼2 log cfu/g) inoculum levels which were then kept at 4 or 22 °C for up to 14 days. Both pathogens grew to an average of 5-6 log cfu/g during storage at 22 °C and the bacterial populations were fairly stable during storage at 4 °C. High-pressure processing of inoculated green onions in the un-wetted, wetted (briefly dipped in water) or soaked (immersed in water for 30 min) conditions at 250-500 MPa for 2 min at 20 °C reduced the population of Salmonella and E. coli O157:H7 by 0.6 to >5 log cfu/g, depending on the pressure level and sample wetness state. The extent of pressure inactivation increased in the order of soaked > wetted > un-wetted state. The pressure sensitivity of the pathogens was also higher at elevated treatment temperatures. Overall, after pressure treatment at 400-450 MPa (soaked) or 450-500 MPa (wetted) for a retention time of 2 min at 20-40 °C, wild-type and antibiotic-resistant mutant strains of Salmonella and E. coli O157:H7 inoculated on green onions were undetectable immediately after treatment and throughout the 15-day storage at 4 °C. The pressure treatments also had minimal adverse impact on most sensorial characteristics as well as on the instrumental color of chopped green onions. This study highlights the promising applications of HHP to minimally process green onions in order to alleviate the risks of Salmonella and E. coli O157:H7 infections associated with the consumption of this commodity.  相似文献   

9.
Little information is available regarding the fate of Listeria monocytogenes during freezing, thawing and home storage of frankfurters even though recent surveys show that consumers regularly store unopened packages in home freezers. This study examined the effects of antimicrobials, refrigerated storage, freezing, thawing method, and post-thawing storage (7 °C) on L. monocytogenes on frankfurters. Inoculated (2.1 log CFU/cm2) frankfurters formulated without (control) or with antimicrobials (1.5% potassium lactate plus 0.1% sodium diacetate) were vacuum-packaged, stored at 4 °C for 6 or 30 d and then frozen (−15 °C) for 10, 30, or 50 d. Packages were thawed under refrigeration (7 °C, 24 h), on a countertop (23 ± 2 °C, 8 h), or in a microwave oven (2450 MHz, 1100 watts, 220 s followed by 120 s holding), and then stored aerobically (7 °C) for 14 d. Bacterial populations were enumerated on PALCAM agar and tryptic soy agar plus 0.6% yeast extract. Antimicrobials completely inhibited (p < 0.05) growth of L. monocytogenes at 4 °C for 30 d under vacuum-packaged conditions, and during post-thawing aerobic storage at 7 °C for 14 d. Different intervals between inoculation and freezing (6 or 30 d) resulted in different pathogen levels on control frankfurters (2.1 or 3.9 log CFU/cm2, respectively), while freezing reduced counts by <1.0 log CFU/cm2. Thawing treatments had little effect on L. monocytogenes populations (<0.5 log CFU/cm2), and post-thawing fate of L. monocytogenes was not influenced by freezing or by thawing method. Pathogen counts on control samples increased by 1.5 log CFU/cm2 at d-7 of aerobic storage, and reached 5.6 log CFU/cm2 at d-14. As indicated by these results, consumers should freeze frankfurters immediately after purchase, and discard frankfurters formulated without antimicrobials within 3 d of thawing and/or opening.  相似文献   

10.
Potential effects of the fat content of frankfurters on the gastrointestinal survival of Listeria monocytogenes were investigated. At various stages of storage (7 °C, up to 55 days), inoculated frankfurters of low (4.5%) and high (32.5%) fat content were exposed to a dynamic gastrointestinal model (37 °C) and L. monocytogenes counts were determined at intervals during exposure in each gastrointestinal compartment (gastric, GC; intestinal, IC). Bacterial survival curves in each compartment were fitted with the Baranyi and Roberts mathematical model. L. monocytogenes populations on low- and high-fat frankfurters exceeded 8.0 log CFU/g at 39 and 55 days of storage, respectively. Major declines in populations occurred after 60 min on low-fat frankfurters in the GC, with reductions of 2.6 to >7.2 log CFU/g at 120 min on days 1 and 39 of storage, respectively. L. monocytogenes reductions in high-fat frankfurters ranged from 1.6 (day-1) to 5.2 (day-55) log CFU/g. Gastric inactivation rates were 0.080–0.194 and 0.030–0.097 log CFU/g/min for low- and high-fat samples, respectively. Since gastric emptying began while the gastric pH was >5, initial counts (enumerated 30 min after ingestion) reaching the IC depended on initial contamination levels on each product, which increased during storage. Subsequent reductions during the intestinal challenge were 0.1–1.4 log CFU/g. Findings indicated protective effects of fat against gastric destruction of L. monocytogenes. However, since the effects of fat were observed mainly at later stages of gastric exposure, they did not influence numbers of viable cells reaching the IC.  相似文献   

11.
The sour orange (Citrus aurantium) juice is commonly used as flavoring and acidifying agent for vegetable salads and appetizers in Turkey. It was aimed to determine the survival and growth pattern of Salmonella Typhimurium and Listeria monocytogenes in sour orange juice. Different concentrations of neutralized and un-neutralized juice samples were inoculated with each of the test microorganisms (∼6 log CFU/mL) separately and then incubated at 4 °C and 37 °C for seven days. It was detected both of the test microorganisms could survive and even grow in neutralized juice samples at 37 °C for two days. However, none of them could survive at the end of seventh day of incubation at 37 °C. Low incubation temperature (+4 °C) increased the survival of the tested microorganisms. Also, it was detected that L. monocytogenes were less resistant to the variable conditions than S. Typhimurium. It was concluded that the antimicrobial effect of sour orange juice mainly depends on the low pH value of the product. However, incubation time and temperature are also effective on the survival of the tested pathogens.  相似文献   

12.
The objectives of the present work were to assess the use of moderate doses of gamma irradiation (2 to 5 kGy) and to reduce the risk of pathogen presence without altering the quality attributes of bovine trimmings and of patties made of irradiated trimmings. Microbiological indicators (coliforms, Pseudomonas spp and mesophilic aerobic counts), physicochemical indicators (pH, color and tiobarbituric acid) and sensory changes were evaluated during storage. 5 kGy irradiation doses slightly increased off flavors in patties. Two pathogenic markers (Listeria monocytogenes and Escherichia coli O157:H7) were inoculated at high or low loads to trimming samples which were subsequently irradiated and lethality curves were obtained. Provided that using irradiation doses ≤ 2.5 kGy are used, reductions of 2 log CFU/g of L. monocytogenes and 5 log CFU/g of E. coli O157:H7 are expected. It seems reasonable to suppose that irradiation can be successfully employed to improve the safety of frozen trimmings when initial pathogenic bacteria burdens are not extremely high.  相似文献   

13.
Salmonella remains the primary cause of reported bacterial food borne disease outbreaks in Belgium. Pork and pork products are recognized as one of the major sources of human salmonellosis. In contrast with the primary production and slaughterhouse phases of the pork meat production chain, only a few studies have focussed on the post-harvest stages. The goal of this study was to evaluate Salmonella and Escherichia coli contamination at the Belgian post-harvest stages. E. coli counts were estimated in order to evaluate the levels of faecal contamination. The results of bacteriological analysis from seven cutting plants, four meat-mincing plants and the four largest Belgian retailers were collected from official and self-monitoring controls. The prevalence of Salmonella in the cutting plants and meat-mincing plants ranged from 0% to 50%. The most frequently isolated serotype was Salmonella typhimurium. The prevalence in minced meat at retail level ranged from 0.3% to 4.3%. The levels of Salmonella contamination estimated from semi-quantitative analysis of data relating to carcasses, cuts of meat and minced meat were equal to −3.40 ± 2.04 log CFU/cm2, −2.64 ± 1.76 log CFU/g and −2.35 ± 1.09 log CFU/g, respectively. The E. coli results in meat cuts and minced meat ranged from 0.21 ± 0.50 to 1.23 ± 0.89 log CFU/g and from 1.33 ± 0.58 to 2.78 ± 0.43 log CFU/g, respectively. The results showed that faecal contamination still needs to be reduced, especially in specific individual plants.  相似文献   

14.
The objective of this research was to determine the effectiveness of caffeine on inactivation of Escherichia coli O157:H7 in brain heart infusion (BHI) broth. Overnight samples of five E. coli O157:H7 strains of (E0019, F4546, H1730, 944 and Cider) were used in this study. These strains were individually inoculated at an initial inoculum level of 2 log CFU/ml into BHI broth containing caffeine at different concentrations (0.00%, 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.50%, 1.75%, and 2.00%). Samples were then incubated at 37 °C for 24 h. Bacterial growth was monitored at different time intervals by measuring turbidity at 610 nm using a spectrophotometer. Results revealed that the addition of caffeine inhibited the growth of E. coli O157:H7. Significant growth inhibition was observed with concentration levels of 0.50% and higher. These results indicate that caffeine has potential as an antimicrobial agent for the treatment of E. coli O157:H7 infection and should be investigated further as a food additive to increase biosafety of consumable food products.  相似文献   

15.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

16.
Spinach plants were irrigated biweekly with water containing 2.1 log CFU Salmonella/100 ml water (the maximum Escherichia coli MPN recommended by the Leafy Greens Marketing Agreement; LGMA), or 4.1 CFU Salmonella/100 ml water to determine Salmonella persistence on spinach leaves. Green Fluorescent protein expressing Salmonella were undetectable by most-probable number (MPN) at 24 h and 7 days following each irrigation event. This study indicates that Salmonella are unlikely to persist on spinach leaves when irrigation water is contaminated at a level below the LGMA standards. In a parallel study, persistence of Salmonella isolated from poultry or produce was compared following biweekly irrigation of spinach plants with water containing 6 log CFU Salmonella/100 ml. Produce Salmonella isolates formed greater biofilms on polystyrene, polycarbonate and stainless steel surfaces and persisted at significantly higher numbers on spinach leaves than those Salmonella from poultry origin during 35 days study. Poultry Salmonella isolates were undetectable (<1 log CFU/g) on spinach plants 7 days following each irrigation event when assayed by direct plating. This study indicates that Salmonella persistence on spinach leaves is affected by the source of contamination and the biofilm forming ability of the strain.  相似文献   

17.
Viability of Listeriamonocytogenes was monitored on frankfurters formulated with or without potassium lactate and sodium diacetate at a ratio of ca. 7:1 and treated with lauric arginate (LAE; 22 or 44 ppm) using the Sprayed Lethality in Container (SLIC®) delivery method. Without antimicrobials, pathogen numbers remained relatively constant at ca. 3.3 log CFU/package for ca. 30 d, but then increased to ca. 8.4 log CFU/package over 120 d. Regardless of whether or not lactate and diacetate were included, when treated with LAE, pathogen numbers decreased from ca. 3.3 log CFU/package to ca. 1.5 log CFU/package within 2 h, but then increased to 7.3 and 6.7 log CFU/package, respectively, after 120 d. When frankfurters were formulated with lactate and diacetate and treated with LAE, pathogen numbers decreased by ca. 2.0 log CFU/package within 2 h and remained relatively unchanged over the 120 d. These data confirm that LAE provides an initial lethality towards L. monocytogenes and when used in combination with reduced levels/ratio of lactate and diacetate as an ingredient for frankfurters provides inhibition throughout shelf life.  相似文献   

18.
Several recent foodborne disease outbreaks associated with leafy green vegetables, including spinach, have been reported. X-ray is a non-thermal technology that has shown promise for reducing pathogenic and spoilage bacteria on spinach leaves. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves using X-ray at different doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) was studied. The effect of X-ray on color quality and microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated spinach was also determined. A mixture of three strains of each tested organism was spot inoculated (100 μl) onto the surface of spinach leaves (approximately 8–9 log ml−1), separately, and air-dried, followed by treatment with X-ray at 22 °C and 55–60% relative humidity. Surviving bacterial populations on spinach leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction/leaf was achieved with 2.0 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on spinach leaves and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. Treatment with X-ray did not significantly affect the color of spinach leaves, even when the maximum dose (2.0 kGy) was used.  相似文献   

19.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

20.
Fresh produce can be a vehicle for the transmission of pathogens capable of causing human illnesses and some of them can grow on fresh-cut vegetables. The survival and growth of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes inoculated onto shredded lettuce was determined under modified atmosphere packaging conditions, at various storage temperatures. We also monitored changes in pH and gas atmospheres within the packages and the growth of psychrotrophic and mesophilic microorganisms. After pathogen inoculation, shredded lettuce was packaged in films of different permeability and stored at 5 and 25 °C. After 10 days at 5 °C populations of E. coli O157:H7 and Salmonella decreased approximately 1.00 log unit while L. monocytogenes increased about 1.00 log unit, in all package films. Moreover, the pathogens level increased between 2.44 and 4.19 log units after 3 days at 25 °C. Psychrotrophic and mesophilic bacteria had similar growth at both temperatures with higher populations in air than in the other atmospheres. The composition of the storage atmosphere within the packaging of lettuce had no significant effect on the survival and growth of the pathogens used in this study at refrigeration temperatures. The results obtained can be considered as a warning indicator, which reinforces the necessity for corrective measures to avoid contamination of vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号