首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of selected, indigenous Saccharomyces cerevisiae added as starters (SRS1, MS72 and RT73) was monitored during Montepulciano d'Abruzzo wine production. In all the fermentations the addition of the starter, caused a decrease of the non-Saccharomyces yeasts. When strains MS72 and RT73 were used as starters they were detected in the first phases of fermentations, while strain SRS1 competed successfully with native yeasts during all the process. Wines obtained by fermentation with the indigenous starters showed some different characteristics, according to the chemical and sensory analyses. This study highlighted that among selected starters with high fermentative capacity, some are able to dominate better than other natural wine yeast biota, whereas some strains can interact and survive besides native yeast populations during the fermentation. As a consequence, the dominance character can have a positive or negative effect on wine quality and has to be considered in the frame of yeast selection in order to improve or characterize traditional wines. Winemakers could choose among different degrees of yeast dominance to modulate the interaction among starter and native wine yeast population.  相似文献   

2.
In this work, we used a cell immobilisation system consisting of Penicillium chrysogenum fungi (GRAS) bound to the osmotolerant yeast strains Saccharomyces cerevisiae X4 and X5 for the partial fermentation of raisin musts. The resulting wines were compared with others obtained by partial fermentation of musts with free yeasts and with a traditionally produced sweet wine (i.e. without fermentation of the must). The analysis of volatile compounds grouped by aroma series showed the partially fermented musts had a more complex aroma than the traditional wine. Specially prominent among aroma series was that of ripe fruit, followed by the milky and chemical series. The volatiles with the greatest impact on wine aroma as assessed in terms of odour activity were ethyl hexanoate, ethyl octanoate, butyrolactone, isoamyl alcohols, acetaldehyde, ethyl acetate, 2,3-butanediol, acetoin and 2,3-butanedione. A cluster analysis according to the Ward method was performed to assess the similarity between the traditional sweet wine and those obtained by partial fermentation with free and immobilised yeasts revealed small differences between the wines obtained with free and immobilised yeasts, and marked differences between partially fermented and traditionally obtained sweet wine. The wines provided by immobilised yeasts were the most appreciated in the sensory analysis (especially those obtained with X4 yeasts).  相似文献   

3.
Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation).  相似文献   

4.
The influence of yeast on the aroma of Sauvignon Blanc wine   总被引:1,自引:0,他引:1  
The main objective of this study was to investigate the effect of different Saccharomyces cerevisiae wine yeast strains on the concentration of aroma-enhancing volatile thiols and fermentation metabolites in Sauvignon Blanc wine. Seven commercial wine yeast strains were selected based on their putative ability to modulate the concentrations of the fruity volatile thiols, 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercapto-hexanol (3MH) and 3-mercapto-hexylacetate (3MHA). Each of these yeasts was used to produce Sauvignon Blanc wines under controlled conditions, in triplicate, in 20-L quantities. The levels of 4MMP, 3MH and 3MHA in these wines were quantified using the p-hydroxymercuribenzoate method. In addition, a total of 24 volatile yeast-derived fermentation aroma compounds were also quantified using headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME–GC–MS). Formal sensory analysis was conducted by 12 trained assessors and, additionally, a panel of 24 experienced wine industry professionals assessed the wines and ranked them in order of preference. The results indicated that the yeast strains varied significantly in terms of their capabilities to (i) produce volatile thiols and fermentation metabolites; and (ii) to modulate the varietal characters of Sauvignon Blanc wine. Yeast strains that produced the highest levels of volatile thiols were responsible for wines with the highest perceived intensity of fruitiness, and these wines were preferred by the tasting panels. While the ‘green’ characters in Sauvignon Blanc wines can be manipulated through vineyard management, the ‘tropical fruity’ characters appear to be largely dependent on the wine yeast strain used during fermentation. Therefore, the choice of yeast strain offers great potential to modulate wine aroma profiles to definable styles and predetermined consumer market specifications.  相似文献   

5.
The aim of this study was to assess and compare fermentation characteristics and aromatic profile of plum wines produced with indigenous microbiota and pure cultures of different selected yeast. Experiments were carried out with plum (Prunus domestica L.) varieties of different fruit ripening times (?a?anska rana, ?a?anska lepotica, and Po?ega?a). Wine fermentations were conducted by the activity of indigenous microbiota, commercially available Saccharomyces cerevisiae and Saccharomyces bayanus yeast strains and joint activity of Schizosaccharomyces pombe and S. cerevisiae (sequential inoculation). Statistically significant differences in fermentative characteristics and the content of certain volatile compounds were observed as a result of metabolic activity of various indigenous and/or selected yeasts during fermentation of plum pomace. Minimal duration of fermentation (4 to 5 d) and fastest ethanol production rate (from 12.3 to 15.5 g/L/d) were the characteristics of the studied S. cerevisiae strains. Isobutanol, 3‐methyl‐1‐butanol, 1‐heptanol, and 1‐octanol were the most prevalent higher alcohols in the tested plum wine samples. The predominant ester in plum wines was ethyl acetate, ethyl lactate, amyl acetate, isoamyl acetate, and ethyl palmitate, esters responsible for the floral and fruity olfactory tones, were also present in large amounts. Also, the use of S. cerevisiae strains resulted in the production of plum wines with better sensory characteristics than ones produced with other investigated yeasts. Obtained results are significant since there is limited data on the compounds responsible for the unique flavor of plum wine, as well as on the impact of different yeast starter cultures application on the overall quality of fruit wines.  相似文献   

6.
Wine is the result of the performance of different yeast strains throughout the fermentation in both spontaneous and inoculated processes. 22 Saccharomyces cerevisiae strains were characterized by microsatellite fingerprinting, selecting 6 of them to formulate S. cerevisiae mixed cultures. The aim of this study was to ascertain a potential benefit to use mixed cultures to improve wine quality. For this purpose yeasts behavior was studied during co-inoculated fermentations. Aromatic composition of the wines obtained was analyzed, and despite the fact that only one strain dominated at the end of the process, co-cultures released different concentrations of major volatile compounds than single strains, especially higher alcohols and acetaldehydes. Nevertheless, no significant differences were found in the type and quantity of the amino acids assimilated. This study demonstrates that the final wine composition may be modulated and enhanced by using suitable combinations of yeast strains.  相似文献   

7.
Two commercial yeast strains were assayed during the winemaking process of Monastrell grapes to determine their influence on colour and phenolic composition of the resulting wines during alcoholic fermentation and maturation. The results showed that in 2002, the wines did not present great differences but in 2003 higher colour intensity and phenolic compounds content were detected when one of the commercial strains was used. A discriminant statistical analysis clearly showed that different yeasts led to different wines as regard their chromatic characteristics.Industrial relevanceThe importance of yeast in winemaking is extensively known since they are responsible for the transformation of sugars into ethanol and for the formation of the most significant aroma compounds in wines. However, they may also participate in wine colour and this role is usually not taken into account in the wine industry. The choice of a yeast strain is an important factor since these microorganisms have the capacity to retain or adsorb phenolic compounds and, on the other hand, yeast may contribute to stabilizing wine colour, as a result of participating in the formation of vitisins during fermentation or liberating mannoproteins that have the capacity to bind to anthocyanins and tannins, protecting them from precipitation. Two commercial yeast strains were assayed during the winemaking process of Monastrell grapes to determine their influence on colour and phenolic composition of the resulting wines during alcoholic fermentation and maturation. The results showed that higher colour intensity and phenolic compounds content were detected when one of the commercial strains was used, both during fermentation and wine aging, and may be used as a tool during winemaking for obtaining stable and highly coloured wines.  相似文献   

8.
Non-Saccharomyces yeast species assume an important role in wine flavor. Notwithstanding, the chemical basis for the flavor characteristics of wines from some grape varieties is not yet defined. The value of this work lies in the use of Malvar white grape, an autochthonous variety from Madrid (Spain) winegrowing region to conduct spontaneous fermentations. This is the first time that a comparative characterization of a wide range of non-Saccharomyces species and a comprehensive analysis of these yeast-derived volatiles has been carried out in this grape variety. β-glucosidase and pectinase (polygalacturonase) extracellular activities were tested on agar plates as primary selection criteria among the 504 non-Saccharomyces isolated from Malvar spontaneous fermentations during four consecutive harvests. Analysis of the wines obtained after fermentation using the selected yeast strains indicates that non-Saccharomyces yeasts isolated along the fermentative process seem that could have a positive impact, showing a high variability in the volatile compounds contributing to the organoleptic characteristics of Malvar wines. Torulaspora delbrueckii CLI 918 was defined as the yeast strain with potential interest for its contribution to the aromatic wine profile with flowery and fruity aromas and could be used in mixed starter cultures with Saccharomyces cerevisiae. However, Hanseniaspora guilliermondii increased the volatile acidity and ethyl acetate, but this species along with the genus Pichia and Candida seem to provide a high quantity of extracellular enzymes which may be beneficial in wine making.  相似文献   

9.
The use of Saccharomyces cerevisiae to produce sweet wine is difficult because yeast is affected by a hyperosmotic stress due to the high sugar concentrations in the fermenting must. One possible alternative could be the coimmobilization of the osmotolerant yeast strains S. cerevisiae X4 and X5 on Penicillium chrysogenum strain H3 (GRAS) for the partial fermentation of raisin musts. This immobilized has been, namely, as yeast biocapsules. Traditional sweet wine (that is, without fermentation of the must) and must partially fermented by free yeast cells were also used for comparison. Partially fermented sweet wines showed higher concentration of the volatile compounds than traditionally produced wines. The wines obtained by immobilized yeast cells reached minor concentrations of major alcohols than wines by free cells. The consumption of specific nitrogen compounds was dependent on yeast strain and the cellular immobilization. A principal component analysis shows that the compounds related to the response to osmotic stress (glycerol, acetaldehyde, acetoin, and butanediol) clearly differentiate the wines obtained with free yeasts but not the wines obtained with immobilized yeasts.  相似文献   

10.
Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME–GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium.  相似文献   

11.
Wine samples were produced from locally available tea infusions (Lipton tea, Top tea and Highland tea) using baker’s yeast (Saccharomyces cerevisiae By1) and yeast cultures from pineapple (S. cerevisiae Py6) and cocoa (S. cerevisiae CY43). Physicochemical analyses and microbial evaluation were undertaken during fermentation. Lipton tea wine produced, using baker’s yeast, pineapple yeast and cocoa yeast had highest alcoholic contents of 7.88%, 6.25% and 7.20%, respectively. Top tea wine produced using the same set of yeasts had highest alcoholic contents of 9.78%, 5.43 and 8.15% respectively, while Highland tea wine produced highest alcoholic contents of 9.78%, 7.07% and 7.61% respectively. Physicochemical analyses for all the wines produced showed that the specific gravity, total solids and pH of the must decreased as fermentation progressed while the titratable acidity remained constant throughout the must fermentation. Colony counts showed a high biomass of yeast cells that decreased as it tended towards the end of fermentation. Sensory analysis of the wines showed that Lipton and Top tea are the most acceptable organoleptically when compared with the commercial wine used as control although the three tested teas were not significantly different statistically. Baker’s yeast was rated as the best yeast for wine fermentation irrespective of the type of tea used. All the wines produced were generally accepted as they were scored above average. This study highlights the potential of using different tea infusions as alternatives to grape and other fruit musts in wine making. It also confirms that commercial yeasts such as baker’s yeast can be used in homemade wine production.  相似文献   

12.
α-Ketoglutaric acid was measured enzymically in wines made in the laboratory from three grape varieties by pure cultures of 12 wine yeasts of the genus Saccharomyces. The results were confirmed with the same juices and 4 yeasts on pilot-plant scale in replicated 30 gallon lots. Mean values for the 12 yeasts ranged from 9 to 117 ppm (overall mean 53). In any one juice the yeasts differed by at least 10-fold in the amounts produced, and certain yeasts produced consistently high or low yields in all juices. The amounts of α-ketoglutaric acid produced depended somewhat on the grape juices used, even though these had comparable pH values, and a significant yeast-juice interaction occurred. The amount of α-ketoglutaric acid formed during fermentation at 15° was 60 per cent of that formed at 25°, and over twice as much was formed at pH 4.2 as at pH 3.0, using four yeast strains. Formation of α-ketoglutaric and pyruvic acids were not significantly correlated. The α-ketoglutaric acid content of 18 white table wines made under comparable conditions on pilot-plant scale from different grape varieties using the same yeast strain ranged from 38 to 152 ppm (mean 90). The significance of the results is discussed, particularly in relation to the binding of sulphur dioxide in wine, and recommendations are given on how to make wines which are low in α-ketoglutaric acid. Formation of α-ketoglutaric acid by three yeasts in a chemically defined medium was lower with increased amounts of nitrogen as ammonium sulphate and higher in the presence of L-glutamic acid, both being used separately as sole nitrogen sources. These findings are discussed in relation to the rǒle of α-ketoglutaric acid in nitrogen metabolism of yeasts.  相似文献   

13.
14.
Several studies have reported the beneficial influence of non-Saccharomyces yeasts and their potential applications in the wine industry, mainly in mixed-culture fermentation with S. cerevisiae. The potential impact of 15 non-Saccharomyces strains from 7 species on 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) release in model medium and Sauvignon Blanc must was evaluated after partial fermentation. Whereas the impact of non-Saccharomyces on 4MSP release in both media was low, some M. pulcherrima, T. delbrueckii and K. thermotolerans strains had a high capacity to release 3SH, despite their minimal fermentation activity. As previously demonstrated for Saccharomyces yeast, this contribution is strain dependant. Taking into account their dynamic and quantitative presence during the whole process, the real impact of non-Saccharomyces yeast on 4MSP and 3SH release was evaluated using a recreated community simulating the yeast ecosystem. Our results revealed a positive impact on 3SH release in Sauvignon Blanc wines by promoting non-Saccharomyces yeast activity and delaying the growth of S. cerevisiae. Some non-Saccharomyces yeast strains are capable of making a positive contribution to volatile thiol release in wines, essentially during the pre-fermentation stage in winemaking, when this microbiological sub-population is dominant.  相似文献   

15.
The production of 1-propanol, isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol by two flor yeast strains during accelerated biological aging of sherry wines with different aging time has been evaluated. The S. cerevisiae G1 strain has shown a higher production of higher alcohols than the S. bayanus F12 strain highlighting the 1-propanol production in the youngest wine. Differences between the two studied yeasts decreased in relation with the aging time of the initial wine used. The multiple regression analysis carried out to relate the higher alcohols concentration and the values obtained from an aging equation showed R-squared values ranging from 81.1 to 96.5%. The higher alcohols that best described such relation were 1-propanol, isobutanol and 3-methyl-1-butanol.  相似文献   

16.
In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present work studies, in a wine model system, the effects of temperature, pH and sugar concentration on the glycerol and ethanol syntheses by yeasts Saccharomyces cerevisiae T73, the type strain of Saccharomyces kudriavzevii IFO 1802T, and an interspecific hybrid between both species (W27), which was accomplished by the application of response surface methodology based in a central composite circumscribed design. Results show that carbon flux could be especially directed towards glycerol synthesis instead of ethanol at low pH, high sugar concentrations and low temperatures. In general, the non-wine yeast S. kudriavzevii produced higher glycerol levels and lower ethanol content than wine strains S. cerevisiae T73 and the hybrid W27, with specific and different glycerol production profiles as a function of temperature and pH. These results were congruent with the higher glycerol-3-phosphate dehydrogenase activities estimated for this species, chiefly at low temperatures (14 °C), which could explain why S. kudriavzevii is a cryotolerant yeast compared to S. cerevisiae.  相似文献   

17.
Influence of different yeasts on the growth of lactic acid bacteria in wine   总被引:3,自引:0,他引:3  
The influence of various yeasts on the growth of lactic acid bacteria in wine was tested by inoculating Lactobacillus hilgardii, L. brevis and two strains of Leuconostoc mesenteroides into experimental wines made with twelve different yeasts of the genus Saccharomyces. Wines made from juice which had been infected with several spoilage yeasts and then fermented with a wine yeast were also tested in this way. It was found that the yeasts differed considerably in their effects on bacterial growth. In some of the experimental wines bacterial growth was delayed or failed altogether. Generally, the unfavourable influence of any yeast on bacterial growth was much reduced if the wines were left in contact with the yeast cells for some weeks after the fermentation. The significance of these results in relation to the occurrence of malo-lactic fermentation in commercial wineries is discussed.  相似文献   

18.
The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol.  相似文献   

19.
The non‐wine Saccharomyces cerevisiae strain of 96581 was found to be a promising candidate for the production of white wine. It produced wines with fusel alcohols that were 57% higher than those produced by the wine yeasts studied and was also more efficient in the production of 2‐phenethyl acetate and 3‐methyl‐1‐butanol acetate. This study also shows that there is a difference in the ester‐formation efficiency for acetates relative to C6, C8 and C10 fatty acid esters for all the studied yeast strains. Therefore, it supports the view that other unidentified enzymes besides those regulated by ATF1 and ATF2 genes are involved in the production of ethyl esters of C6–C10 fatty acids. DNA analysis of the 25S, 18S, 5.8S and 5S ribosomal DNA genes in these strains showed high conservation. Despite the closely related nature of these yeast strains, the chemical profiles of the wines produced were significantly different.  相似文献   

20.
Twenty-six wild Oenococcus oeni strains were investigated for their ability to form biogenic amines during malolactic fermentation in synthetic medium and in wine. Eight strains produced histamine and tyramine in screening broth at concentrations of 2.6-5.6 mg/L and 1.2-5.3 mg/L, respectively. Based on their ability to form biogenic amines, five strains were selected to inoculate three wines obtained by the fermentation of three different Saccharomyces cerevisiae strains (A, B, and C). All bacterial strains could perform malolactic fermentation for short periods in wine C, whereas only one strain performed complete malolactic fermentation in wines A and B. Two O. oeni strains (261 and 351) produced histamine and tyramine in wine C. Time-course analysis of these compounds showed that for both strains, histamine and tyramine production began at day 10 and finished on day 25, after the end of malolactic fermentation. These results indicate that the ability of O. oeni to produce histamine and tyramine is dependent on the bacterial strain and on the wine composition, which in turn depends on the yeast strain used for fermentation, and on the length of bacteria-yeast contact time after the completion of malolactic fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号