首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by the state space model based predictive control, this paper presents the combination design of extended non-minimal state space predictive control (ENMSSPC) and modified linear quadratic regulator (LQR) for a kind of nonlinear process with output feedback coupling, which shows improved control performance for both model/plant match and model/plant mismatch cases. In many previous control methods for this kind of nonlinear systems, the nonlinear part is treated in different ways such as ignored, represented as a rough linear one or assumed to be time-variant when corresponding predictive control methods are designed. However, the above methods will generally lead to information loss, resulting in the influenced control performance. This paper will show that the ENMSSPC-LQ control structure will further improve closed-loop control performance concerning tracking ability and disturbance rejection compared with previous predictive control methods.  相似文献   

2.
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.  相似文献   

3.
In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme.  相似文献   

4.
This paper presents a nonlinear proportional-integral-derivative (PID) controller, combining a pattern based adaptive algorithm to cope with the problem of tuning the controller, and an associative memory to store the parameters, according to different operating conditions. The simplicity of the algorithm enables its implementation in current programmable logic controller technology. Several real-time experiments, carried out in a pressurized tank, illustrate the performance of the proposed controller.  相似文献   

5.
In this paper, a new model-free adaptive digital integral terminal sliding mode predictive control scheme is proposed for a class of nonlinear discrete-time systems with disturbances. The characteristic of the proposed control approach is easy to be implemented because it merely adopts the input and output data model of the system based on compact form dynamic linearization (CFDL) data-driven technique, while the technique of perturbation estimation is applied to estimate the disturbance term of the system. Moreover, by means of combining model predictive control and CFDL digital integral terminal sliding mode control (CFDL-DITSMC), the CFDL digital integral terminal sliding mode predictive control (CFDL-DITSMPC) method is proposed, which can further improve the tracking accuracy and disturbance rejection performance in comparison with the CFDL model-free adaptive control, neural network quasi-sliding mode control and the CFDL-DITSMC scheme. Meanwhile, the stability of the proposed approach is guaranteed by theoretical analysis, and the effectiveness of the proposed method is also illustrated by numerical simulations and the experiment on the two-tank water level control system.  相似文献   

6.
System performance in terms of control accuracy and stability is usually negatively affected by friction occurrences in mechanical systems. Thus, it is important to model the friction properly so that it can be used in controller design. This paper employs adaptive fuzzy systems to approximate unknown nonlinear friction functions, and applies the estimation of friction in proportional-derivative (PD) control law to enhance the control performance. On the basis of Lyapunov stability theory, a bound of tracking errors of the closed-loop control system is derived. Techniques proposed in this paper have been applied to a typical motion control system for simulation studies. The results obtained demonstrate that our proposed method in this paper has good potential in controlling many mechanical systems with unknown nonlinear friction.  相似文献   

7.
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results.  相似文献   

8.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.  相似文献   

9.
In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.  相似文献   

10.
A nonlinear adaptive control strategy is proposed for a binary batch distillation column. The hybrid control algorithm comprises a generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). The adaptive observation scheme mainly estimates the imprecisely known parameters based on the available tray temperature measurements. The sensitivity of the proposed estimator is investigated with respect to the effect of initialization error, unmeasured disturbance and uncertainty. Then, a comparative study is carried out between the derived nonlinear GMC-ASE controller and a traditional proportional integral law in terms of set point tracking and disturbance rejection performance. The study also includes the effect of measurement noise and parametric uncertainty on the closed-loop performance. The proposed adaptive control algorithm is shown to be quite promising due to the exponential error convergence capability of the ASE estimator in addition to the high-quality control action provided by the GMC controller.  相似文献   

11.
This paper is concerned with the design of distributed optimal coordination control for nonlinear multi-agent systems (NMASs) based on event-triggered adaptive dynamic programming (ETADP) method. The method is firstly introduced to design the distributed coordination controllers for NMASs, which not only avoids the transmission of redundant data compared with traditional time-triggered adaptive dynamic programming (TTADP) strategy and minimizes the performance function of each agent. The event-triggered conditions are proposed based on Lyapunov functional method, which is deduced by guaranteeing the stability of NMASs. Then a new adaptive policy iteration algorithm is presented to obtain the online solutions of the Hamiton–Jocabi–Bellman (HJB) equations. In order to implement the proposed ETADP method, the fuzzy hyperbolic model based critic neural networks (NN) are utilized to approximate the value functions and help calculate the control policies. In critic NNs, the NN weight estimations are updated at the event-triggered instants leading to aperiodic weight tuning laws so that computation cost is reduced. It is proved that the weight estimation errors and the local neighborhood coordination errors is uniformly ultimately bounded (UUB). Finally, two simulation examples are provided to show the effectiveness of the proposed ETADP method.  相似文献   

12.
In this paper, the event-triggered adaptive control for a class of nonlinear systems in Brunovsky form is considered. The sensors are event-triggered thus the states are transmitted only at the discrete triggering points, which are more efficient in using communication bandwidth. To solve this problem, we design a set of event-triggered conditions and based on which the controller and parameter estimator are designed without the ISS assumption. It is shown that the proposed control schemes guarantee that all the closed-loop signals are semi-globally bounded and the stabilization error converges to the origin asymptotically. The Zeno behavior is also excluded. Simulation results illustrate the effectiveness of our scheme.  相似文献   

13.
Proportional-integral-derivative (PID) control is widely practised as the base layer controller in the industry due to its robustness and design simplicity. However, a supervisory control layer over the base layer, namely a model predictive controller (MPC), is becoming increasingly popular with the advent of computer process control. The use of a supervisory layer has led to different control structures. In this study, we perform an objective investigation of several commonly used control structures such as ‘Cascaded PI controller’, ‘DMC cascaded to PI’ and ‘Direct DMC’. Performance of these control structures are compared on a pilot-scale continuous stirred tank heater (CSTH) system. We used dynamic matrix control (DMC) algorithm as a representative of MPC. In the DMC cascaded to PI structure, the flow-loops are regulated by the PI controller. On top of that a DMC manipulates the set-points of the flow-loops to control the temperature and the level of water in the tank. The ‘Direct DMC’ structure, as its name suggests, uses DMC to manipulate the valves directly. Performance of all control structures were evaluated based on the integrated squared error (ISE) values. In this empirical study, the ‘Direct DMC’ structure showed a promise to act as regulatory controller. The selection of control frequency is critical for this structure. The effect of control frequency on controller performance of the ‘Direct DMC’ structure was also studied.  相似文献   

14.
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller.  相似文献   

15.
This paper presents an adaptive backstepping-based multilevel approach for the first time to control nonlinear interconnected systems with unknown parameters. The system consists of a nonlinear controller at the first level to neutralize the interaction terms, and some adaptive controllers at the second level, in which the gains are optimally tuned using genetic algorithm. The presented scheme can be used in systems with strong couplings where completely ignoring the interactions leads to problems in performance or stability. In order to test the suitability of the method, two case studies are provided: the uncertain double and triple coupled inverted pendulums connected by springs with unknown parameters. The simulation results show that the method is capable of controlling the system effectively, in both regulation and tracking tasks.  相似文献   

16.
17.
This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.  相似文献   

18.
In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.  相似文献   

19.
In order to reduce the global energy consumption and avoid highest power peaks during operation of manufacturing systems, an optimization-based controller for selective switching on/off of peripheral devices in a test bench that emulates the energy consumption of a periodic system is proposed. First, energy consumption models for the test-bench devices are obtained based on data and subspace identification methods. Next, a control strategy is designed based on both optimization and receding horizon approach, considering the energy consumption models, operating constraints, and the real processes performed by peripheral devices. Thus, a control policy based on dynamical models of peripheral devices is proposed to reduce the energy consumption of the manufacturing systems without sacrificing the productivity. Afterward, the proposed strategy is validated in the test bench and comparing to a typical rule-based control scheme commonly used for these manufacturing systems. Based on the obtained results, reductions near 7% could be achieved allowing improvements in energy efficiency via minimization of the energy costs related to nominal power purchased.  相似文献   

20.
为了避免基于模型的控制方法在控制非线性系统时存在建模困难和模型失配的问题,提出一种非线性系统的自适应无模型预测控制方法。该方法首先将非线性系统转化为由一组伪偏导数描述的线性系统,然后利用一种改进的投影算法在线估计这组伪偏导数,得到被控系统的泛模型。根据得到的泛模型,推导出预测模型,在此基础上根据预测控制滚动的优化策略求解二次目标函数得出最优控制律。通过对CSTR过程进行仿真验证,结果表明该方法具有良好的跟踪性能和较强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号