首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.  相似文献   

2.
This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S–A) and controller to actuator (C–A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper investigates decentralized output feedback stabilization problem for a class of switched stochastic high-order systems with time-varying state/input delays. With the help of coordinate transformations, a scaling gain is incorporated into the observers and controllers for the nominal system. Based on the homogeneous domination approach and stochastic Lyapunov–Krasovskii stability theorem, it is shown that global asymptotic stability in probability of the closed-loop system can be implemented by tuning the scaling gain. Two examples are given to demonstrate the feasibility of the proposed control method.  相似文献   

4.
In this paper, a generalized predictor based control scheme is proposed to improve system performance of set-point tracking and disturbance rejection for non-minimum phase (NMP) systems. By using a generalized predictor to estimate the system output without time delay, a model-based extended state observer (MESO) is designed to simultaneously estimate the system state and disturbance. Accordingly, an active disturbance rejection control design is developed which consists of a state feedback control and a feedforward control for the disturbance rejection. The MESO and feedback controllers are analytically derived by specifying the desired characteristic roots of MESO and closed-loop system poles, respectively. To improve the output tracking performance, a pre-filter is designed based on a desired closed-loop transfer function for the set-point tracking. A sufficient condition guaranteeing robust stability of the closed-loop system against time-varying uncertainties is established in terms of linear matrix inequalities (LMIs). Three illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control scheme.  相似文献   

5.
This paper considers the problem of global stabilization by state feedback for a class of high-order nonlinear systems with time-varying delays. Comparing with the existing relevant literature, the systems under investigation allow more uncertainties, to which the existing control methods are inapplicable. By introducing sign function and necessarily modifying the method of adding a power integrator, a state feedback controller is successfully constructed to preserve the equilibrium at the origin and guarantee the global asymptotic stability of the resulting closed-loop system. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed approach.  相似文献   

6.
Today’s technological demands require challenging control solutions such as real-time applications of Networked Control System (NCS). However, due to communication protocol and shared data bus, NCS experiences uncertain and unpredictable time delays in both input and output channels. These delays cause asynchronization between the controller and the plant thereby degrading the performance of closed-loop control systems. To address this problem, this paper proposes to utilize digital redesign technique to provide real-time random delay compensation.  相似文献   

7.
This paper considers the problem of robust non-fragile observer-based dynamic event-triggered sliding mode control (SMC) for a class of discrete-time Lipschitz nonlinear networked control systems subject to sensor saturation and dead-zone input nonlinearity. First, an improved dynamic event-triggered scheme (DETS) in consideration of sensor saturation is proposed to reduce the number of data transmission. Next, a non-fragile observer is designed to estimate the system state, which facilitates the construction of the discrete sliding surface. By using a reformulated Lipschitz property, the error dynamics and sliding mode dynamics are modeled as a unified linear parameter varying (LPV) networked system with time-varying delays. Then, based on this model, sufficient conditions are established to guarantee the resulting closed-loop system to be asymptotically stable with a given disturbance attenuation level. Furthermore, an observer-based event-triggered SMC law is designed to drive the trajectories of the observer system onto a region near equilibrium point in a finite time in the presence of dead-zone input nonlinearity. Finally, two practical examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

8.
This paper addresses a predictive cloud control problem for a linear multiagent system with random network delays and noises. To reduce communication cost, a stochastic event-triggered schedule is introduced to decide whether current measurements need to be transmitted. An optimal state estimation algorithm is designed to compensate random network delays in the feedback channel. Subsequently, a predictive cloud control scheme is proposed for the multiagent system to achieve both stability and consensus. Simultaneously, random network delays in the forward channel is compensated actively. Sufficient and necessary conditions of stability and consensus for the closed-loop multiagent system are derived. Finally, a numerical example is provided to verify correctness and effectiveness of the proposed methods.  相似文献   

9.
This paper is concerned with the adaptive fault-tolerant control (FTC) problem for a class of multivariable nonlinear systems with external disturbances, modeling errors and time-varying sensor faults. The bias, drift, loss of accuracy and loss of effectiveness faults can be effectively accommodated by this scheme. The dynamic surface control (DSC) technique and adaptive first-order filters are brought together to design an adaptive FTC scheme which can reduce significantly the computational burden and improve further the control performance. The adaptation laws are constructed using novel low-pass filter based modification terms which enable under high learning or modification gains to achieve robust, fast and high-accuracy estimation without incurring undesired high-frequency oscillations. It is proved that all signals in the closed-loop system are uniformly ultimately bounded and the tracking-errors can be made arbitrary close to zero. Simulation results are provided to verify the effectiveness and superiority of the proposed FTC method.  相似文献   

10.
The finite-time boundedness issue for a class of discrete switched systems with time-varying delays is investigated via sliding mode control (SMC) approach. By employing the Lyapunov functional and average dwell time method, new sufficient conditions are derived to guarantee the finite-time boundedness of the dynamic system in the novel sliding surface. By solving an optimization problem, the sliding mode controller is synthesized such that the discrete reaching condition is satisfied and the chattering is reduced. A simulation example tests the feasibility of the provided SMC scheme.  相似文献   

11.
Z Xia  J Li  J Li 《ISA transactions》2012,51(6):702-712
This paper is concerned with the delay-dependent H(∞) fuzzy static output feedback control scheme for discrete-time Takagi-Sugeno (T-S) fuzzy stochastic systems with distributed time-varying delays. To begin with, the T-S fuzzy stochastic system is transformed to an equivalent switching fuzzy stochastic system. Then, based on novel matrix decoupling technique, improved free-weighting matrix technique and piecewise Lyapunov-Krasovskii function (PLKF), a new delay-dependent H(∞) fuzzy static output feedback controller design approach is first derived for the switching fuzzy stochastic system. Some drawbacks existing in the previous papers such as matrix equalities constraint, coordinate transformation, the same output matrices, diagonal structure constraint on Lyapunov matrices and BMI problem have been eliminated. Since only a set of LMIs is involved, the controller parameters can be solved directly by the Matlab LMI toolbox. Finally, two examples are provided to illustrate the validity of the proposed method.  相似文献   

12.
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors.  相似文献   

13.
An adaptive backstepping tracking scheme is developed for a class of strict-feedback systems with unknown periodically time-varying parameters and unknown control gain functions. High-order neural network (HONN) and Fourier series expansion (FSE) are combined into a new function approximator to model each uncertain term in the system. The dynamic surface control (DSC) approach is used to solve the problem of ‘explosion of complexity’ in the backstepping design procedure. Nussbaum gain function (NGF) is employed to deal with the unknown control gain functions. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. Two simulation examples are provided to demonstrate the effectiveness of the control scheme designed in this paper.  相似文献   

14.
Karimi HR  Gao H 《ISA transactions》2008,47(3):311-324
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.  相似文献   

15.
This study proposes anti-disturbance dynamic surface control scheme for nonlinear strict-feedback systems subjected simultaneously to unknown asymmetric dead-zone nonlinearity, unmatched external disturbance and uncertain nonlinear dynamics. Radial basis function-neural network (RBF-NN) is invoked to approximate the uncertain dynamics of the system, and the dead-zone nonlinearity is represented as a time-varying system with a bounded disturbance. The nonlinear disturbance observer (NDO) is proposed to estimate the unmatched external disturbance which further will be used to compensate the effect of the disturbance. Then, by integrating RBF-NN, NDO and dynamic surface control (DSC) approaches, the proposed anti-disturbance control scheme is designed. Stability analysis of the closed-loop system shows that all signals of the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error can be made arbitrarily small by proper selection of the design parameters. In comparison with the existing methods, the proposed scheme deals with the unmatched external disturbance, uncertain dynamics and unknown asymmetric dead-zone nonlinearity, simultaneously; it avoids the "explosion of complexity" problem and develops the simple control law without singularity concern. Furthermore, some imposed assumptions to the dead-zone input and disturbances are relaxed. Simulation and comparison results verify the effectiveness of the proposed approach.  相似文献   

16.
This paper proposes a new non-fragile stochastic control method to investigate the robust sampled-data synchronization problem for uncertain chaotic Lurie systems (CLSs) with time-varying delays. The controller gain fluctuation and time-varying uncertain parameters are supposed to be random and satisfy certain Bernoulli distributed white noise sequences. Moreover, by choosing an appropriate Lyapunov-Krasovskii functional (LKF), which takes full advantage of the available information about the actual sampling pattern and the nonlinear condition, a novel synchronization criterion is developed for analyzing the corresponding synchronization error system. Furthermore, based on the most powerful free-matrix-based integral inequality (FMBII), the desired non-fragile sampled-data estimator controller is obtained in terms of the solution of linear matrix inequalities. Finally, three numerical simulation examples of Chua's circuit and neural network are provided to show the effectiveness and superiorities of the proposed theoretical results.  相似文献   

17.
This paper focuses on the stability of some second-order linear systems with multiple constant and time-varying delays, under the assumption that the corresponding system without delays is an oscillator. Sufficient conditions for delay-dependent stability will be derived using the integral quadratic constraint approach combined with the generalized eigenvalue distribution of some appropriate finite-dimensional matrix pencils. As applications, we shall discuss some fluid approximation models used in congestion control of high-speed networks, under the natural assumptions that the control-time intervals are constant, but the round-trip times are time-varying.  相似文献   

18.
This paper focuses on the problem of fault-tolerant controller (FTC) design for uncertain networked control systems (NCSs) with random delays and actuator faults. A new fault model is proposed to represent more class of actuator faults. More precisely, the NCSs with random delays and the possible actuator faults are modeled as a Markovian jump system (MJS) with incomplete transition probabilities (TPs) and then LMI-based sufficient conditions are derived to ensure the stochastic stability of the closed-loop system. The sufficient conditions are constructed to synthesize the mode-dependent static-output feedback (SOF) control laws. Feasibility and reliability of the proposed FTC against actuator faults are indicated through simulation results.  相似文献   

19.
讨论了一类具有随机通信时延的网络控制系统的建模及稳定性分析,其中网络诱导时延受控于一概率分布未知的马尔可夫链,其概率分布可通过Baum-Welch算法计算.基于隐马尔町夫模型理论,将采用状态反馈的闭环网络控制系统建模成跳变线性系统,给出了这类网络控制系统随机稳定的允分条件,并将状态反馈控制器的求解问题转化为线性矩阵不等式的解的问题.最后,通过一个仿真算例说明了上述判定系统稳定性条件的有效性.  相似文献   

20.
This paper investigates a complicated class of cooperative tracking problems with time-varying number of tracking agents and communication time delays. During the entire tracking process, tracking agents are dynamically changing and the number is not fixed. This results in jumping of tracking errors and dynamic dimensions of the corresponding Laplacian matrices. Consequently, the stability analysis turns to be difficult especially when the effect of communication time delays is taken into consideration. In order to solve this issue, a new type of average Lyapunov function is constructed to compensate the unmatched dimensions of communication topologies over different time intervals. Generalized reciprocally convex Lemma and a more relaxed switched technique are employed to achieve a less conservative switched stability condition for the multi-agent system with variable tracking number and time delays. Finally, through a series of numerical simulations, the effectiveness and feasibility of derived results are verified. The relationship between maximum allowable communication time delays and various control parameters is obtained in a quantitative way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号