首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电液伺服力控系统的自适应滑模控制   总被引:9,自引:0,他引:9  
针对存在不确定性的非线性电液伺服力控系统的跟踪控制问题,基于等价控制的概念,提出了一种自适应滑模控制律综合方法,应用参数自适应的方法,消除不确定性对控制性能的影响,以达到鲁棒跟踪控制的目的。为了证明这种控制器可行性,利用微机实现的该控制器被应用于某疲劳试验机电液伺服系统,实时控制的结果验证了所提方法的有效性。  相似文献   

2.
A novel adaptive sliding mode control with application to MEMS gyroscope   总被引:1,自引:0,他引:1  
This paper presents a new adaptive sliding mode controller for MEMS gyroscope; an adaptive tracking controller with a proportional and integral sliding surface is proposed. The adaptive sliding mode control algorithm can estimate the angular velocity and the damping and stiffness coefficients in real time. A proportional and integral sliding surface, instead of a conventional sliding surface is adopted. An adaptive sliding mode controller that incorporates both matched and unmatched uncertainties and disturbances is derived and the stability of the closed-loop system is established. The numerical simulation is presented to verify the effectiveness of the proposed control scheme. It is shown that the proposed adaptive sliding mode control scheme offers several advantages such as the consistent estimation of gyroscope parameters including angular velocity and large robustness to parameter variations and external disturbances.  相似文献   

3.
针对混合输入机构中常速电机可不可控的特点,提出了基于常速电机位置跟踪的控制策略来对伺服电机进行控制,对常速电机的速度波动进行补偿,并给出了控制框图。因为系统的精确动力学模型难以获得,故考虑系统参数的不确定、外部扰动和非线性摩擦,设计了模糊自适应滑模变结构控制器以实现混合输入机构的轨迹跟踪。应用模糊自适应推理逼近系统的不确定之和,从而得到连续的控制增益,消除了变结构控制的抖振。  相似文献   

4.
In this study, a novel decentralized adaptive full-order sliding mode control framework is proposed for the robust synchronized formation motion of multiple unmanned aerial vehicles (UAVs) subject to system uncertainty. First, a full-order sliding mode surface in a decentralized manner is designed to incorporate both the individual position tracking error and the synchronized formation error while the UAV group is engaged in building a certain desired geometric pattern in three dimensional space. Second, a decentralized virtual plant controller is constructed which allows the embedded low-pass filter to attain the chattering free property of the sliding mode controller. In addition, robust adaptive technique is integrated in the decentralized chattering free sliding control design in order to handle unknown bounded uncertainties, without requirements for assuming a priori knowledge of bounds on the system uncertainties as stated in conventional chattering free control methods. Subsequently, system robustness as well as stability of the decentralized full-order sliding mode control of multiple UAVs is synthesized. Numerical simulation results illustrate the effectiveness of the proposed control framework to achieve robust 3D formation flight of the multi-UAV system.  相似文献   

5.
This paper focuses on the current control of a permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and external disturbances. To improve the performance of the PMSM current loop in terms of the speed of response, tracking accuracy, and robustness, a hybrid control strategy is proposed by combining the adaptive sliding mode control and sliding mode disturbance observer (SMDO). An adaptive law is introduced in the sliding mode current controller to improve the dynamic response speed of the current loop and robustness of the PMSM drive system to the existing parameter variations. The SMDO is used as a compensator to restrain the external disturbances and reduce the sliding mode control gains. Experiments results demonstrate that the proposed control strategy can guarantee strong anti-disturbance capability of the PMSM drive system with improved current and speed-tracking performance.  相似文献   

6.
Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This paper constructs an adaptive robust controller  相似文献   

7.
防抱制动系统参数自适应滑模变结构控制器的研究   总被引:9,自引:0,他引:9  
首先针对具有参数不确定性的二阶非线性系统提出了自适应滑模变结构的控制算法 ,该算法的基本思想是用自适应策略来估计不确定系统的参数 ,根据估计出的参数值 ,来设计滑模控制器 ,优点是无须事先已知不确定参数的边界 ,并且由于在自适应变结构控制采用了消颤措施 (增加了消颤项 ) ,能削弱常规滑模控制所引起的颤振现象 ,也能提高单纯的自适应控制的鲁棒性能。而后将这一控制策略应用于防抱死制动系统 (ABS)的研究中 ,设计了防抱死制动系统的自适应滑模变结构控制器 ,通过计算机仿真 ,验证了该控制方案在 ABS应用中的可行性和有效性  相似文献   

8.
针对线性不确定性系统的鲁棒跟踪控制问题,提出了一种前馈补偿滑模鲁棒跟踪控制方法,并证明了采用该方法所构成的闭环系统是李亚普诺夫意义下渐近稳定的,将该控制器设计方法应用于某结构疲劳试验机电液位置伺服控制系统,验证了所设计控制器的有效性。仿真和实时控制结果均证明:对存在不确定性的结构疲劳试验机电液位置伺服系统,应用该研究所提出的具有前馈补偿的滑模鲁棒跟踪控制器,能较有效地削弱常规VSC所固有的抖振现象,在不同的负载条件下跟踪不同频率的正弦信号均能获得良好的跟踪精度,控制器对系统的不确定性呈现较强的鲁棒性。  相似文献   

9.
电液位置伺服系统的自适应滑模鲁棒跟踪控制   总被引:2,自引:0,他引:2  
针对存在参数不确定性的电液位置伺服系统的跟踪控制问题,基于滑模控制理论,提出了一种具有参数自适应能力的自适应滑模控制方法。通过自适应方法,来消除参数不确定性对系统控制性能的影响,进而实现鲁棒控制。基于李雅普诺夫稳定性理论证明了自适应滑模控制系统的渐近稳定性。将该方法应用于某疲劳试验机电液伺服系统的跟踪控制,仿真和实时控制结果证明了该方法的有效性。  相似文献   

10.
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection.  相似文献   

11.
This paper proposes a higher-order sliding mode observer based robust backstepping control to realize high-performance sensorless speed regulation for the interior permanent magnet synchronous motor (IPMSM). A new robust adaptive super-twisting higher-order sliding mode based observer is proposed to estimate the rotor position. The proposed observer has advantages of sliding chattering reduction and robustness against uncertainties. And, a new robust integral adaptive backstepping control with sliding mode actions is designed to achieve precise speed regulation. The uncertainties with unknown bounds can be stabilized by the sliding mode actions. And both transient and steady performance can be achieved by using the sliding mode and integral actions simultaneously. Then, a sensorless scheme is put forward to by combining the presented observer and the proposed controller. The stability of the observer and controller are verified. Simulation and experiment results validate the proposed approach.  相似文献   

12.
基于反演设计的机械臂非奇异终端神经滑模控制   总被引:2,自引:0,他引:2  
针对具有建模误差和不确定干扰的多关节机械臂的轨迹跟踪问题,设计反演非奇异终端神经滑模控制。该方案是采用能有限时间收敛的非奇异终端滑模面,根据滑模控制原理和反演方法设计反演滑模控制器;对于反演滑模控制系统中由于建模误差和不确定干扰造成的不确定因素的上界,设计径向基(Radial basis function, RBF)神经网络自适应律,在线估计不确定因素的上界;利用李亚普诺夫定理证明了系统的稳定性。仿真结果表明,该方法具有良好的轨迹跟踪性能,提高对于建模误差和不确定干扰等因素的鲁棒性,削弱了抖动。  相似文献   

13.
在低速、超低速运行时,电液伺服系统受到以摩擦力为主的干扰力矩和参数不确定性等扰动,进而影响电液位置伺服系统的低速性能。该研究从低速平稳性和跟踪精度两个角度出发,分析了电液位置伺服系统低速性能的主要影响因素,提出了一种滑模自适应控制方法。并将该方法应用于某硅钢厂电液单辊CPC系统,进行了仿真。研究表明,在考虑系统非线性、扰动及参数不确定性的情况下,该研究的滑模自适应控制方法能够有效地抑制抖振并获得伺服系统的低速平稳、快速跟踪。  相似文献   

14.
15.
为实现挖掘机器人的自动挖掘,在挖掘机器人的轨迹规划器给出铲斗期望运动轨迹的情况下,需要挖掘机器人的控制系统能够控制其工作装置实现对给定轨迹的准确跟踪.利用拉格朗日方法建立了挖掘机器人工作装置的三自由度动力学方程,设计了自适应模糊滑模变结构控制器.利用模糊控制动态调节切换增益,将滑模控制的切换项转化为连续的模糊系统,增强了控制系统对挖掘机器人工作装置不确定性和外界干扰的鲁棒性,削弱了滑模控制的抖振现象,并且有较强的自适应跟踪能力.利用MATLAB7.4/Simulink工具箱对所设计的控制器进行了仿真,给出了自适应模糊滑模控制的跟踪性能及误差.  相似文献   

16.
This paper presents a robust tracking control strategy using an adaptive sliding mode approach for MEMS triaxial angular sensor device that is able to detect rotation in three orthogonal axes, using a single vibrating mass. An adaptive sliding mode controller with proportional and integral sliding surface is developed and the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The proposed adaptive sliding mode controller updates estimates of all stiffness errors, damping, and input rotation parameters in real time, removing the need for any offline calibration stages. To enable all unknown parameter estimates to converge to their true values, the necessary model trajectory is shown to be a three-dimensional Lissajous pattern. The numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive sliding mode control scheme.  相似文献   

17.
In this paper, robust and adaptive nonsingular fast terminal sliding-mode (NFTSM) control schemes for the trajectory tracking problem are proposed with known or unknown upper bound of the system uncertainty and external disturbances. The developed controllers take the advantage of the NFTSM theory to ensure fast convergence rate, singularity avoidance, and robustness against uncertainties and external disturbances. First, a robust NFTSM controller is proposed which guarantees that sliding surface and equilibrium point can be reached in a short finite-time from any initial state. Then, in order to cope with the unknown upper bound of the system uncertainty which may be occurring in practical applications, a new adaptive NFTSM algorithm is developed. One feature of the proposed control law is their adaptation techniques where the prior knowledge of parameters uncertainty and disturbances is not needed. However, the adaptive tuning law can estimate the upper bound of these uncertainties using only position and velocity measurements. Moreover, the proposed controller eliminates the chattering effect without losing the robustness property and the precision. Stability analysis is performed using the Lyapunov stability theory, and simulation studies are conducted to verify the effectiveness of the developed control schemes.  相似文献   

18.
基于Backstepping的电液伺服系统多级自适应滑模控制   总被引:2,自引:0,他引:2  
针对电液伺服系统的非线性特性、系统参数及外部负载的非匹配不确定性,在电液伺服系统的位置跟踪控制中,提出了基于Backstepping逆向递推技术的多级自适应滑模控制方法,应用Backstepping的逆向递推方法有效地解决了高阶系统的控制问题,并结合了自适应方法和滑模控制方法各自优良的抗干扰特点。仿真结果显示,该控制方法具有较强的鲁棒性及良好的跟踪性能。  相似文献   

19.
In this paper, a new control methodology is developed to enhance the tracking performance of fully actuated surface vessels based on an integrating between an adaptive integral sliding mode control (AISMC) and a disturbance observer (DO). First, an integral sliding mode control (ISMC), in which the backstepping control technique is used as the nominal controller, is designed for the system. The major features, i.e., benefits and drawbacks, of the ISMC are discussed thoroughly. Then, to enhance the tracking performance of the system, an adaptive technique and a new disturbance observer based on sliding mode technique are developed and integrated into the ISMC. The stability of the closed-loop system is proved based on Lyapunov criteria. Computer simulation is performed to illustrate the tracking performance of the proposed controller and compare with the existing controllers for the tracking control of a surface vessel. The simulation results demonstrate the superior performance of the proposed strategy.  相似文献   

20.
In this paper, a robust adaptive motion/force control (RAMFC) scheme is presented for a crawler-type mobile manipulator (CTMM) with nonholonomic constraint. For the position tracking control design, an adaptive sliding mode tracking controller is proposed to deal with the unknown upper bounds of system parameter uncertainties and external disturbances. Based on the position tracking results, a robust control strategy is also developed for the nonholonomic constraint force of CTMM. According to the Lyapunov stability theory, the stability of the closed-loop control system, the uniformly ultimately boundedness of position tracking errors, and the boundedness of the force error and adaptive coefficient errors are all guaranteed by using the derived RAMFC scheme. Simulation and experimental tests on a CTMM with two-link manipulator demonstrate the effectiveness and robustness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号