首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.  相似文献   

2.
Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper.  相似文献   

3.
This paper considers the adaptive time-varying formation tracking control of unmanned aerial vehicles (UAVs) with quantized input. Uncertainties and nonholonomic constraint are involved in the UAV model. With a novel transformation of the final control signal, a very coarse quantization can be achieved. Adaptive quantized controllers are proposed by employing backstepping technique. It is proved that, with our proposed strategy, all signals of the closed-loop system are globally uniformly bounded, and the formation tracking error converges to an arbitrarily small residual set. Simulation results are given to illustrate the effectiveness of the proposed strategy.  相似文献   

4.
This paper investigates decentralized output feedback stabilization problem for a class of switched stochastic high-order systems with time-varying state/input delays. With the help of coordinate transformations, a scaling gain is incorporated into the observers and controllers for the nominal system. Based on the homogeneous domination approach and stochastic Lyapunov–Krasovskii stability theorem, it is shown that global asymptotic stability in probability of the closed-loop system can be implemented by tuning the scaling gain. Two examples are given to demonstrate the feasibility of the proposed control method.  相似文献   

5.
This study proposes anti-disturbance dynamic surface control scheme for nonlinear strict-feedback systems subjected simultaneously to unknown asymmetric dead-zone nonlinearity, unmatched external disturbance and uncertain nonlinear dynamics. Radial basis function-neural network (RBF-NN) is invoked to approximate the uncertain dynamics of the system, and the dead-zone nonlinearity is represented as a time-varying system with a bounded disturbance. The nonlinear disturbance observer (NDO) is proposed to estimate the unmatched external disturbance which further will be used to compensate the effect of the disturbance. Then, by integrating RBF-NN, NDO and dynamic surface control (DSC) approaches, the proposed anti-disturbance control scheme is designed. Stability analysis of the closed-loop system shows that all signals of the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error can be made arbitrarily small by proper selection of the design parameters. In comparison with the existing methods, the proposed scheme deals with the unmatched external disturbance, uncertain dynamics and unknown asymmetric dead-zone nonlinearity, simultaneously; it avoids the "explosion of complexity" problem and develops the simple control law without singularity concern. Furthermore, some imposed assumptions to the dead-zone input and disturbances are relaxed. Simulation and comparison results verify the effectiveness of the proposed approach.  相似文献   

6.
This paper investigates the problem of global finite-time stabilization in probability for a class of stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular homogeneous growth conditions. By adding one power integrator technique, an output feedback controller is first designed for the nominal system without perturbing nonlinearities. Based on homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system will converge to the origin in finite time and stay at the origin thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of the proposed design procedure.  相似文献   

7.
In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results.  相似文献   

8.
This paper presents a delay-independent nonlinear disturbance observer (NDO) design methodology for adaptive tracking of uncertain pure-feedback nonlinear systems in the presence of unknown time delays and unmatched external disturbances. Compared with all existing NDO-based control results for uncertain lower-triangular nonlinear systems where unknown time delays have been not considered, the main contribution of this paper is to develop a delay-independent design strategy to construct an NDO-based adaptive tracking scheme in the presence of unknown time-delayed nonlinearities and non-affine nonlinearities unmatched in the control input. The proposed delay-independent scheme is constructed by employing the appropriate Lyapunov-Krasovskii functionals and the same function approximators for the NDO and the controller. It is shown that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

9.
针对具有模型不确定且参数未知的单输入单输出的非线性系统的特点,文中提出了一种自适应反馈控制方法。该方法中,假设系统被调整量最高阶导数的理想值为已知。由于方法仅需要对被控对象的调整量的输出进行反馈,而不要求状态量的具体值,所以降低了算法实现的难度。通过数值仿真验证了方法的可行性和有效性。  相似文献   

10.
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations.  相似文献   

11.
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound.  相似文献   

12.
In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller.  相似文献   

13.
This paper is concerned with the adaptive bipartite output consensus tracking problem of high-order nonlinear coopetition multi-agent systems with input saturation under a signed directed graph. A distributed fuzzy-based command filtered backstepping scheme is proposed, where the unknown nonlinear dynamics are approximated by the fuzzy logic system (FLS). The errors compensation mechanism is constructed to eliminate the errors caused by filters. Under the proposed control scheme, we only need to design one adaptive law for each agent, and it is proved that the bipartite output tracking errors converge into the desired neighborhood and all the closed-loop signals are bounded although the input saturation exists. Two numerical examples are included to verify the effectiveness of given scheme.  相似文献   

14.
In this paper, we address the problem of trajectory tracking control of underactuated surface vessels in a quantitative method with only position and attitude available. Combined with high-gain observer, parameter compression algorithm and performance function, an adaptive control scheme with prescribed performance is proposed. The high-gain observer is constructed to estimate the velocities, and the parameter compression algorithm is adopted to address persistent perturbations and model uncertainties in a more concise way. By prescribed performance function, the controller can be designed with prescribed performance. The results about system stability is given and proved by using the Lyapunov direct method. The signals concerning with all the errors converge to a bounded set. Compared with the existing methods, the developed scheme can reduce the number of tuning parameters, and guarantee the tracking errors bounded within the prescribed performance constraints in the transformed coordinate, which means the steady errors, convergence rates and maximum overshoots can be guaranteed by the performance function. Comparison and numerical simulations are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

15.
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes.  相似文献   

16.
This paper addresses the problem of stochastic dynamic output feedback (SDOF) stabilization for a class of stochastic continuous-time state-delayed systems with norm-bounded nonlinear uncertainties. The aim is to design a linear, delayless, and SDOF control for all admissible uncertainties. The designed control ensures stochastically exponentially stability in the mean square, independent of the deterministic time delay. Using the Finsler's lemma, the necessary and sufficient conditions for the existence of such a control are proposed in terms of certain linear matrix inequalities. These results are illustrated with a simple example to demonstrate the applicability of the proposed design approach.  相似文献   

17.
18.
In this paper, we aim to solve the control problem of nonlinear affine systems, under the condition of the input deadzone and output constraint with the external unknown disturbance. To eliminate the effects of the input deadzone, a Radial Basis Function Neural Network (RBFNN) is introduced to compensate for the negative impact of input deadzone. Meanwhile, we design a barrier Lyapunov function to ensure that the output parameters are restricted. In support of the barrier Lyapunov method, we build an adaptive neural network controller based on state feedback and output feedback methods. The stability of the closed-loop system is proven via the Lyapunov method and the performance of the expected effects is verified in simulation.  相似文献   

19.
This paper presents an adaptive iterative learning control scheme for a class of nonlinear systems with unknown time-varying delays and control direction preceded by unknown nonlinear backlash-like hysteresis. Boundary layer function is introduced to construct an auxiliary error variable, which relaxes the identical initial condition assumption of iterative learning control. For the controller design, integral Lyapunov function candidate is used, which avoids the possible singularity problem by introducing hyperbolic tangent funciton. After compensating for uncertainties with time-varying delays by combining appropriate Lyapunov-Krasovskii function with Young's inequality, an adaptive iterative learning control scheme is designed through neural approximation technique and Nussbaum function method. On the basis of the hyperbolic tangent function's characteristics, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.  相似文献   

20.
This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号