首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
真空熔烧钴基合金--碳化钨复合涂层材料的耐磨性能研究   总被引:1,自引:0,他引:1  
黄新波  贾建援  林化春  林晨 《功能材料》2005,36(8):1282-1286
采用真空熔烧法制得钴基合金——碳化钨复合涂层材料,借助扫描电子显微镜、X射线衍射仪、显微硬度计等先进的测试手段对涂层的组织结构和表面形貌进行观察分析。应用盘销式摩擦磨损试验机对不同碳化钨含量的复合涂层材料和淬火态45钢进行了磨损试验。试验结果表明,在相同试验条件下,复合涂层的耐磨性显著高于淬火钢,且其耐磨性随碳化钨含量的增加而提高,淬火钢的耐磨性随着载荷的增加迅速降低,而复合涂层的耐磨性则变化不大。  相似文献   

2.
为了探索提高环模材料抗植物磨料磨损的表面强化工艺,对环模常用材料45#钢进行激光淬火处理,通过磨料磨损试验,利用正交试验设计,探讨了不同激光淬火工艺参数对材料耐磨性的影响。试验数据分析显示:3个工艺参数对磨损量影响大小顺序为激光功率、扫描速度和光斑直径,耐磨性的最优参数组合为激光功率2050W、扫描速度20mm/s、光斑直径4mm。植物磨料对未经激光淬火的45#钢的磨损机制主要为显微切削+粘着磨损,激光淬火后的45#钢磨损机制主要为机械抛光+显微切削,且其表面犁削深度较之未经激光淬火处理的试件明显浅而窄。  相似文献   

3.
以Fe2O3,WO3,Al,C为反应原料,采用SHS-离心法制备W-C-Fe内衬复合钢管.利用X射线衍射(XRD)、扫描电镜(SEM)分析了涂层的组织,用显微硬度仪测量内衬层硬度,并通过磨粒磨损试验测量了该涂层的耐磨性.结果表明,涂层组织包括主相Fe3W3C及少量的WC,W2C,Fe3C,Fe.涂层组织呈梯度分布,靠近基体处晶粒细小,远离基体处晶粒呈粗大树枝状.涂层硬度为13.5±1.6 GPa.涂层的主要磨损机制为显微切削.涂层的相对耐磨性是淬火45#钢的16倍以上.  相似文献   

4.
吴磊  浦娟  吴铭方  龙伟民  钟素娟  胡庆贤  蓝阳 《材料导报》2021,35(16):16111-16114,16119
采用等离子弧粉末熔覆技术在Q345钢表面熔覆镍基碳化钨涂层,研究了粉末中不同碳化钨含量对镍基碳化钨熔覆层组织及性能的影响.借助光学显微镜、扫描电镜及X射线衍射仪分析镍基碳化钨熔覆层的组织形貌,用显微硬度计和摩擦磨损实验机分别测量镍基碳化钨熔覆层的硬度和耐磨性.结果表明:镍基碳化钨熔覆层与基层之间呈冶金结合,涂层表面无气孔缺陷.镍基碳化钨涂层组织主要由碳化钨颗粒和镍基粘结相构成,碳化钨是WC和W2 C,镍基粘结相中包含SiC、Cr23 C6 、Ni3 Si、γ-Ni等物相.随着粉末中碳化钨含量从15% (质量分数,下同)增加至50% ,熔覆涂层组织中硬质相数量增多,其硬度和耐磨性显著提高.当碳化钨含量为50%时,熔覆涂层硬度高达1 024HV10且耐磨性最好.  相似文献   

5.
WC复合涂层是一种有效减少工件磨损的保护涂层,目前国内外对渗透钎焊制备的WC复合涂层磨损机理的研究较少。利用渗透钎焊技术在Q235钢表面制备了镍铬合金-碳化钨复合涂层;观察了涂层经过砂轮摩擦后的磨损表面形貌,分析了WC含量对涂层耐磨性能的影响规律以及涂层磨损的微观机制。结果表明:影响涂层耐磨性的因素主要是涂层中的WC含量,涂层的耐磨性随着WC相含量的升高而提高;WC-Co用量为50%制得的涂层的磨损机理是砂轮硬质颗粒对涂层的磨粒磨损,而WC-Co用量10%制得的涂层,砂轮硬质颗粒对涂层的切割除造成少量的WC颗粒脱落外,主要是使大量粘结相镍铬合金韧性撕裂脱落,耐磨性很差,表面形貌为平面状撕裂断面,所以磨损断裂主要是以塑性变形为主。  相似文献   

6.
40Cr钢表面涂敷层的磨损和腐蚀磨损研究   总被引:2,自引:0,他引:2  
用掺有 10 %(w)CeO2 粉末的及未掺的KF 2 0 1铁基高强度耐磨合金粉末 ,对淬火态 40Cr钢材表面进行喷涂、喷熔和激光涂敷等表面处理 ,考察了用这 3种工艺制作的 6种涂层的显微组织、硬度分布、无润滑磨损和腐蚀磨损。结果表明 ,涂层的磨损抗力和腐蚀磨损抗力都比 40Cr钢基底的大为提高。激光涂敷层的磨损抗力达到淬火态 40Cr钢基底的 5倍以上 ,在 5 %盐水 +石英砂内进行腐蚀磨损试验 ,激光涂敷层的腐蚀磨损抗力达到 40Cr钢基底的 2倍以上。在KF 2 0 1粉末中掺入CeO2 ,Ce能使涂层组织细化 ,涂层磨损抗力与腐蚀磨损抗力得到进一步的提高。  相似文献   

7.
Q235钢表面双层辉光离子强化层摩擦磨损性能   总被引:1,自引:0,他引:1  
徐晋勇  高原  宋宜梅  高清  徐重 《材料工程》2006,(Z1):239-242
在真空容器中,设置提供含有欲渗合金元素Mo,Cr的供给源和被渗Q235钢试样,利用双层辉光离子渗金属技术,在试样表面进行Mo-Cr共渗,之后经渗碳、淬火及回火复合处理形成强化层.Mo-Cr共渗层厚度在100μm以上,表面Mo含量可达20%(质量分数,下同),Cr含量达到10%.复合处理后表面硬度达到1300HV0.025.M-200磨损试验机磨损实验表明,摩擦因数平均在0.1左右,平均相对耐磨性是GCr15钢经渗碳、淬火及回火后的2.25倍.  相似文献   

8.
为了研究Q235钢表面冶金形成Mo-Cr低合金高速钢的摩擦学特性,利用双层辉光离子渗金属技术,在Q235钢表面进行Mo-Cr共渗,随后进行超饱和渗碳、淬火及回火复合处理.研究结果表明:Mo-Cr共渗层厚度在100 μm以上,表面Mo含量可达20%,Cr含量达到10%,超饱和渗碳表面含碳量超过2.0%,表面成分接近钼系高速钢.淬火及回火后表面硬度达到1300HV,超过一般冶金高速钢.磨损试验表明,摩擦系数随着接触应力的增加而增大,平均相对耐磨性是GCr15渗碳淬火钢的2.2倍.  相似文献   

9.
激光淬火功率对45~#钢抗植物磨料磨损性能的影响   总被引:1,自引:0,他引:1  
本文以苜蓿草粉为典型植物磨料,系统研究了激光淬火功率对45~#钢抗植物磨料磨损性能的影响。试验结果表明:在实验条件下,材料表面硬度最大值可达679HV,材料硬度最大值在距表面0.2~0.4mm之间;激光淬火后的45~#钢抗植物磨料磨损性能远高于未经激光处理的试件。激光功率对材料硬度和耐磨性的影响趋势并不完全一致,耐磨性最好的试件硬度并非最高;植物磨料对激光淬火后的45~#钢的磨损机理主要为显微切削,与未经激光淬火的试件相比,激光淬火后的45~#钢表面犁削深度明显浅而窄,但当激光功率降至1750W时,塑变疲劳和碳化物剥落明显增加。研究结论可为农业机械金属材料的耐磨性设计提供依据。  相似文献   

10.
制备了粉煤灰微珠/环氧树脂复合材料涂层,并利用JM-V型磨耗仪对涂层材料进行了磨损试验,研究了粉煤灰微珠含量、微珠粒径以及试验负载和速度对复合涂层耐磨性能的影响。结果表明,随粉煤灰微珠含量的增加,涂层的耐磨性呈先增加后下降的趋势,当填充的微珠质量分数为15%时,复合材料涂层的耐磨性最佳。随微珠粒径的增大,微珠在磨损过程中更加容易破碎,导致复合材料涂层的耐磨性随之下降。对比不同载荷和速度下复合材料涂层的磨损试验结果发现,随负载的增加,复合材料涂层的耐磨性降低;加快试验速度,涂层材料的磨损量也随之变大。  相似文献   

11.
再制造工程中很多表面镀层要求具有优异的摩擦磨损与耐腐蚀性能,利用纳米电刷镀技术在45钢基材上制备NiCNTs、Ni-CNTs/PTFE、Ni-WC/PTFE-CNTs复合镀层。采用XRD和SEM观察电刷镀复合镀层表面相结构和微观形貌,采用球盘式摩擦磨损试验机测试其在干摩擦条件下的摩擦磨损性能,采用动电位极化曲线研究其在3.5%NaCl溶液中的电化学腐蚀行为。结果表明:Ni-WC/PTFE-CNTs复合镀层耐磨性能最优,其次为Ni-CNTs/PTFE、Ni-CNTs复合镀层,均强于纯镍镀层;当CNTs质量浓度分别为1.5g/L和1.0g/L时,Ni-CNTs复合镀层分别表现出最优的摩擦磨损性能和最佳的耐腐蚀性能,Ni-WC/PTFE-CNTs、Ni-CNTs/PTFE复合镀层次之。纯镍镀层和Ni-CNTs复合镀层的磨损机制是粘着磨损,Ni-CNTs/PTFE复合镀层的磨损机制主要是粘着磨损,其次为磨粒磨损,Ni-WC/PTFE-CNTs复合镀层的磨损机制主要是磨粒磨损和接触疲劳磨损。  相似文献   

12.
以钨氧化物、钴氧化物和炭黑为原料, 通过原位还原碳化反应制备纳米WC-η(η为Co3W3C、Co6W6C等缺碳相)复合粉, 粉末平均粒径为155 nm。该复合粉经团聚造粒制备得到具有高致密性和良好流动性的热喷涂粉末。以此纳米结构和商业化的微米结构低碳WC-12Co粉末作为喂料, 通过超音速火焰喷涂制备硬质合金涂层。结果表明, 纳米结构涂层中生成了一定量等轴状的W2C相, 裂纹主要沿晶界或相界面扩展, 而微米结构涂层中除W2C外还含有较多的W相, 主要包裹在WC颗粒表面, 穿晶断裂比例较高, 裂纹扩展路径较平滑。由于纳米结构涂层组织致密、晶粒细小、界面积大, 因此比微米结构涂层具有更高的硬度和断裂韧性。两种涂层在熔融锌液中浸泡200 h后, 微米结构涂层中产生了较多的横向和纵向裂纹, 导致材料的大面积剥落和基材腐蚀; 纳米结构涂层中没有发生锌的浸蚀, 在局部产生了少量纵向裂纹, 裂纹间隙被钨钴氧化物所填充, 反而抑制了熔锌对涂层的腐蚀, 因此纳米结构涂层表现出更高的耐熔锌腐蚀性能。  相似文献   

13.
Almost fully dense nickel-titanium carbide composite coatings with varied titanium carbide content were deposited on 45 carbon steel by laser cladding. High content of titanium carbide particles up to 50 wt.% with bimodal microstructure could be homogeneously distributed in the nickel based matrix. Due to the presence of the harder nickel-titanium carbide composite coating on the 45 carbon steel, the surface hardness and wear properties were significantly improved. The Vickers hardness (HV 3) increased from about 260 HV 3 for the 45 carbon steel to 300 HV 3 – 360 HV 3 for nickel based composite coating containing 30 wt.% titanium carbide and 550 HV 3 – 680 HV 3 for nickel based composite coating containing 50 wt.% titanium carbide composite coating, respectively. The coefficient of friction and volume wear rate was reduced down to 0.41×10−6 mm3 N−1 m−1 and 9.3×10−6 mm3 N−1 ⋅ m−1 when a nickel based composite coating containing 50 wt.% titanium carbide was coated on the 45 carbon steel, respectively. The enhanced wear performance of the composite coating was due to presence of harder nickel-titanium carbide composite coating and formation of varied soft and lubricant metal oxides consisting of mainly titanium oxides and minor iron and nickel oxides.  相似文献   

14.
对热浸镀铝-阳极氧化后的45钢在6%(体积分数)KH560硅烷溶液中进行不同时间的封孔处理,在45钢表面形成Al-Al2O3-硅烷复合涂层,研究复合涂层的微观组织及其对45钢的耐蚀性能和45钢-30%(质量分数,下同)Cf/nylon6复合材料的电偶腐蚀的影响。结果表明:硅烷涂层密封了Al2O3涂层的孔隙,阻止腐蚀液侵蚀基体,提高了45钢的耐蚀性;同时Al-Al2O3-硅烷复合涂层良好的绝缘性能使45钢与30%Cf/nylon6之间的电偶腐蚀的驱动力减小,改善其电偶腐蚀抗力。经5 min最佳KH560工艺处理后,试样的自腐蚀电流密度较单一热浸镀铝试样下降了3个数量级,电化学阻抗提高了2个数量级,与30%C f/nylon6复合材料偶接的电偶电流密度下降了约75%。  相似文献   

15.
高速火焰喷涂NiCr-Cr3C2涂层抗蚀性能研究   总被引:2,自引:0,他引:2  
在20#钢基体上利用高速火焰喷涂NiCr-Cr3C2,同时对喷涂好的试样进行涂盐腐蚀.利用数学的方法对腐蚀动力学曲线进行拟合,并利用扫描电镜、能谱分析及X射线等对其抗腐蚀机理进行探讨.  相似文献   

16.
以45号钢为基体,采用电刷镀制备了Cr-CNTs复合镀层。通过X射线衍射仪(XRD)、扫描电镜(SEM)、扫描电子显微镜附带能谱仪(EDS)等技术对镀层的晶粒尺寸,截面与表面形貌及CNTs在镀层表面的分布进行了表征。此外,利用显微硬度计、电化学工作站、磨损试验机等仪器对镀层的硬度、抗腐蚀性、耐磨性等进行了测试。研究结果表明:Cr-CNTs复合镀层组织致密无明显缺陷,CNTs弥散分布于镀层中,在胞状组织的交界处出现了富集;适量CNTs的加入在一定程度上细化了镀层的晶粒;在CNTs弥散强化和细晶强化等作用下,复合镀层的硬度提高了23.8%,腐蚀速率降低了49.2%,而且耐磨性能也得到了显著的改善。  相似文献   

17.
程虎  方志刚  戴晟  高玉新  赵先锐 《材料保护》2012,45(4):63-66,75
为了研究激光器对Ni基碳化钨合金熔覆层组织结构和性能的影响,分别采用Nd:YAG与CO2激光熔覆技术在NAK80模具钢表面制备了Ni基碳化钨合金层,利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪、显微硬度计以及摩擦磨损试验机测试分析了2种熔覆层的组织结构、显微硬度及耐磨性能。结果表明:2种熔覆层与基体之间均呈现良好的化学冶金结合;熔覆层组织主要为粗大的未熔碳化钨颗粒和均匀分布的树枝晶,Nd:YAG激光熔覆层的组织比CO2激光熔覆层的细小;2种熔覆层相结构主要包括WC,W2C,Cr23C6,NiCr,CrB2以及γ-Ni等;2种激光器熔覆处理后,NAK80模具钢表面硬度和耐磨性都得到显著改善,CO2激光熔覆层的硬度和耐磨性高于Nd:YAG激光熔覆层,2种激光熔覆试样的磨损机制均为磨粒磨损。  相似文献   

18.
Characteristics of electrocodeposited Ni-Co-SiC composite coating   总被引:1,自引:0,他引:1  
Electrodeposited composites are gaining importance for their advantages including low cost, ease and simplicity of operation to tailor made coatings for tribological applications. Generally, composites containing carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and high temperature oxidation resistance as compared to alloy and pure metal electroplating. In the present work, electrolytic codeposition technique was adopted in the deposition of Ni-Co-SiC composite coating on mild steel substrate, using nickel alloyed with cobalt as the binder phase with SiC as dispersed particles. To improve the properties of coating further, Cr plating was also performed. Since the particle size and volume percent variation of dispersoid have great importance in codeposition, so the effect of these two variables on the process of codeposition and properties was observed. Morphological studies of Ni-Co-SiC coating were carried out with scanning electron microscopy and X-ray diffraction analysis to correlate the mechanical and corrosion behaviour of the coating.  相似文献   

19.
林波  王瑞权  高宗为  陈云祥 《材料保护》2012,45(1):59-60,68,80
为改善45钢表面的力学性能和耐蚀性,在相同功率下采用不同扫描速率在其表面激光熔覆制备了Ni基(Ni35A)复合涂层。利用金相显微镜、X射线衍射仪、显微硬度计和电化学腐蚀测试系统对熔覆试样进行组织形貌、相组成、显微硬度和耐蚀性能分析。结果表明:熔覆试样由熔覆层、结合区和基体3部分组成;熔覆层组织细密并与基体冶金结合,扫描速率过大时易形成裂纹;熔覆层主要由FeNi3和Ni3B相组成,不同速率所得熔覆层显微硬度均超过400 HV;扫描速率为500 mm/min时熔覆试样自腐蚀电位提高了40 mV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号