首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reviews the use of metal powders dispersed in the dielectric fluid and refractory PM electrodes, to initiate workpiece surface modification during EDM. Experimental work details the effects of EDM parameters (up to 270 V) on the hardness/composition of the white layer following die sink machining of AISI H13 tool steel and roll texturing of 2% Cr steel using partially sintered PM electrodes. Similar data are presented following EDM scanning and wire cutting of standard TI alloy TI-6AI-4V and a y TIAI. With AISI H13, recast layers were 5-20 μm thick and up to ∼ 1350 HK0.025. When machining TI-6AI-4V with WC/Co electrodes, recast microhardness was 600-2900 HK0.025. Wire cutting y TIAI generated porous alloyed layers up to 115 μm thick with extensive cracks and no increase in bulk hardness.  相似文献   

2.
EDM is a useful process for machining high-aspect ratio features with good accuracy in electrically conductive materials irrespective of their mechanical properties. With the ability of micro-EDM to compete with the resolution of conventional semi-conductor processing techniques, the process has attracted interest for the potential machining of single-crystal silicon. In order for the process to be feasible, the damage mechanism occurring during machining must be characterised to assess the need for secondary processing. Despite this the microstructural transformations induced by the process on the surface of the workpiece have not yet been assessed. In this study transmission electron microscopy (TEM) and laser-Raman spectroscopy are employed to characterise the microstructural changes as well as the presence of any contaminants and defects at the nano-scale. A twinned-crystalline structure created by epitaxial growth is formed in the recast layer. Some amorphous phase is also present. Findings indicate sub-surface pores between 10 nm and 200 nm diameter formed by gas expansion are observed. If the formation of such pores can be generalised for EDM processing of other materials, this phenomenon may contribute to the reduced mechanical integrity of such machined surfaces. Significant tool electrode material deposition with crystals of down to 3 nm diameter also occurred in the workpiece surface. The nano-scale of embedded material may have implications for the progress of electrical discharge machining as a coating process and the properties of such coatings.  相似文献   

3.
Workpiece surface modification using electrical discharge machining   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a widely used process in the mould / die and aerospace industries. Following a brief summary of the process, the paper reviews published work on the deliberate surface alloying of various workpiece materials using EDM. Details are given of operations involving powder metallurgy (PM) tool electrodes and the use of powders suspended in the dielectric fluid, typically aluminium, nickel, titanium, etc. Following this, experimental results are presented on the surface alloying of AISI H13 hot work tool steel during a die sink operation using partially sintered WC / Co electrodes operating in a hydrocarbon oil dielectric. An L8 fractional factorial Taguchi experiment was used to identify the effect of key operating factors on output measures (electrode wear, workpiece surface hardness, etc.). With respect to microhardness, the percentage contribution ratios (PCR) for peak current, electrode polarity and pulse on time were ˜24, 20 and 19%, respectively. Typically, changes in surface metallurgy were measured up to a depth of ˜30 μm (with a higher than normal voltage of ˜270 V) and an increase in the surface hardness of the recast layer from ˜620 HK0.025 up to ˜1350 HK0.025.  相似文献   

4.
Inconel alloys including IN 718 alloy are widely used in turbomachinery industry due to their superior mechanical properties. Inconel alloys are very difficult to machine using cutting and grinding. Wire electrical discharge machining (W-EDM) is an alternative process to manufacture complex Inconel parts. However, little research has been done on surface integrity by W-EDMed IN 718. This study focuses on surface integrity of IN 718 by W-EDM at different modes of discharge energy. The results show that the EDMed surface topography shows dominant coral reef microstructures at high energy mode, while random microvoids are dominant at low energy modes. The average roughness can be significantly reduced at low energy mode. A thick white layer is predominantly discontinuous and non-uniform at relative high energy modes. Microvoids are confined within the thick white layers and no microcracks were found in the subsurface. A thin white layer by trim cut at low energy mode becomes continuous, uniform, and is free of voids. Compared to the bulk, white layers have dramatic reduction in microhardness. In addition, surface alloying from wire electrode and water dielectric is obvious in main cut, but it can be minimized in trim cuts.  相似文献   

5.
Machinability and surface integrity of RR1000 nickel based superalloy   总被引:1,自引:0,他引:1  
Alloy development for gas turbine components has produced materials able to maintain strength and integrity at operating temperatures up to ∼1050 °C. Next-generation RR1000 nickel-based superalloy reflects this philosophy, albeit at the expense of machinability. Experimental data for drilling showed flank wear when operating at 45 m/min to be <100 μm for a distance cut of 1800 mm (150 holes). Thrust forces measured 1600–1800 N. Re-deposited material on hole surfaces and drag/distortion was evident on cross-sectional micrographs. Roughness of end-milled specimens was <0.8 μm Ra with minimal damage using new tools, however significant burring/increased microhardness (∼150 HK0.05) and white layer formation occurred when employing worn tools.  相似文献   

6.
研究脉冲电弧加工镍基高温合金表面微观形貌,包括变质层厚度及特征、加工表面粗糙度、显微硬度,综合考虑以上各方面,研究脉冲电弧工作时,脉冲频率、占空比两种加工参数对表面变质层完整性的影响规律,得出频率和占空比较高时更容易产生裂纹,较低的频率和占空比会使熔化凝固层的厚度提高。  相似文献   

7.
《Intermetallics》1999,7(8):967-969
Experimental data is presented which compares the effect of grinding and high speed milling (HSM) on the fatigue strength of a gamma titanium aluminide intermetallic alloy. Results showed that HSM significantly increased fatigue strength by as much as 200 MPa over polished samples. Measurement and analysis of workpiece subsurface microhardness and microstructure indicated that the high run-out values correlated to high hardness and plastic deformation of the near surface lamellae.  相似文献   

8.
The paper details results from a comprehensive series of experiments on the effects of key operating variables; cutter orientation and workpiece tilt angle, on tool life/length cut, cutting force, workpiece surface roughness (Ra), subsurface microstructure/microhardness and residual stress, when high-speed milling under finishing conditions. In terms of length cut, the 8 mm diameter coated (TiAlCrN multi-layer) carbide ball nose end mills achieved tool life values approaching 200 m. Life results for the horizontal downwards orientation when cutting with a workpiece tilt angle of 45° were similar to those when operating with the workpiece mounted horizontally, however, cutting forces were significantly higher in the latter case. Evidence of tool chatter was also observed from cutting force signatures with the horizontal upwards mode. Mean compressive surface residual stresses up to −850 MPa measured parallel to the feed direction were obtained when machining using worn tools with a 0° workpiece inclination, while tensile stresses were obtained when machining with horizontal downwards orientation.  相似文献   

9.
This study explores the feasibility of removing the recast layer (RCL) using etching and mechanical grinding for Ni-based superalloy materials by means of electrical discharge machining (EDM). The EDM process is widely used for machining hard metals and performing specific tasks that cannot be achieved using conventional techniques. The sparks produced during the EDM process melt the metal's surface, which then undergo ultra rapid quenching. A layer forms on the workpiece surface defined as a recast layer after solidification. Molds and dies desire to remove the RCL even though it is hard and has good matrix adherence.This experiment is divided into three stages. The first stage acquires a thick recast layer by using EDM with a larger discharging energy. A thick recast layer is essential for verification of the EDM technique for observing the recast process. Thus, this work applies the Taguchi L18 analytical method to acquire the thick recast layer. The second stage optimizes the recast layer removal technique. Therefore, the thick recast layer is intentionally made in the first stage. This work determines the second stage setting using Taguchi's recommendation. Thus, the L9 orthogonal array sets up the etching and mechanical grinding parameters and observes the recast layer removal quantity analysis. Finally, an experiment studies the surface characteristics of Ni-based superalloys, such as composition and micro-hardness after removing the recast layer.  相似文献   

10.
This work is focused on the combined study of the evolution of tool wear, quality of machined holes and surface integrity of work-piece, in the dry drilling of alloy Ti–6Al–4V. Tool wear was studied with optical microscope and SEM–EDS techniques. The quality of machined holes was estimated in terms of geometrical accuracy and burr formation. Surface integrity involves the study of surface roughness, metallurgical alterations and microhardness tests. The end of tool life was reached because of catastrophic failure of the drill, but no significant progressive wear in cutting zone was observed previously. High hole quality was observed even near tool catastrophic failure, evaluated from the point of view of dimensions, surface roughness and burr height. However, microhardness measurements and SEM–EDS analysis of work-piece showed important microstructural changes related with a loss of mechanical properties. Depending on the application of the machined component, the state of the work-piece could be more restrictive than the tool wear, and the end of tool life should be established from the point of view of controlled damage in a work-piece.  相似文献   

11.
陈光忠  何志坚  杨岳 《表面技术》2016,45(1):101-105
目的改善Ti-6Al-4V钛合金的组织性能。方法使用离心研磨工艺对Ti-6Al-4V钛合金进行表面处理,通过显微硬度计、X射线应力分析仪、金相显微镜,对不同加工时间下试样表层的显微硬度、残余应力、金相组织进行测试。结果离心研磨加工后,Ti-6Al-4V钛合金表面的显微硬度得到提高,试样最表面的显微硬度随加工时间的延长呈现逐渐增大的趋势,加工时间为40 min时,显微硬度达到最大值385HV,比试样基体硬度值提高了55HV;在加工深度方向上,随着深度的增加,显微硬度值逐渐降低,在深度为400μm附近,显微硬度值已与基体硬度值相差不大,并且基本不再下降。加工完成后,试样表面产生了有益的残余压应力,最大残余压应力值为436 MPa。金相组织分析结果表明,试样表层组织形成了剧烈塑性变形层,其深度约40μm,在变形层内,组织的晶粒得到明显细化。结论离心研磨抛光工艺对Ti-6Al-4V钛合金表面组织性能改善效果明显,验证了使用该工艺对Ti-6Al-4V钛合金进行表面强化的可行性。  相似文献   

12.
Laser-assisted machining (LAM), an alternative method of fabricating difficult-to-machine materials, uses primarily laser power to heat the local area (without necessarily evaporating or melting any material) before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and geography with regard to difficult-to-machine materials, especially structural ceramics.This study on the application of laser-assisted machining to Al2O3 ceramics examines the measurements of cutting force and workpiece surface temperature as well as surface integrity and tool wear. Specifically, it uses the lattice Boltzmann method (LBM) to calculate the temperature distribution inside the ceramic workpiece during the LAM process and ensure that the laser energy causes no subsurface damage. The experimental results reveal that the LAM process efficiently reduces the cutting force by 22% (feed force) and 20% (thrust force) and produces better workpiece surface quality than conventional planing.  相似文献   

13.
The use of heat-resistant titanium alloys for the manufacture of gas turbine engines components for aerospace/energy applications has become a routine exercise. However, components with complex designs specifications might pose manufacturing challenges especially when finishing processes are needed to enable their compliance with tight industrial standards for workpiece surface integrity. Information on polishing processes for such sensitive industrial applications is scarce. The paper reports on the influence of polishing methods/strategies on the quality and integrity of workpiece surfaces obtained after different polishing methods on Ti-6-4 heat-resistant alloy. The research focuses on identifying an “optimised” polishing strategy that will enable finishing a family of targeted safety critical aero-engine (TSCA-E) components, on which the simultaneous fulfillment of the following technological/quality criteria is required: (i) tool life to enable polishing of minimum of workpiece surface areas that are related with specific features of TSCA-E components; (ii) removal of pre-machining (i.e. milling) marks while obtaining required surface finish; (iii) generation of damage-free polished surfaces, i.e. high workpiece surface integrity. Two (belt; bob) polishing methods with various media/grades (Al2O3, SiC, polycrystalline diamond) of the abrasive materials in conjunction with three cutting media (dry; chilled air; minimum quantity of lubricant) have been tested to address the overall finishing of TSCA-E components. Although significant differences in tool life performance exist between belt and bob polishing methods, both are capable to meet the requirements of minimum workpiece surface coverage if “optimised” operating parameters are employed. When considering surface roughness criteria, Al2O3 belts and SiC bob tools were found appropriate. Furthermore, surfaces obtained with these tools when employing cooling media (chilled air for belt polishing and minimum quantity of lubricant (MQL) for bob polishing) showed compliance with the tight requirements of industrial standards for workpiece surface integrity (metallurgical damage and residual stresses). This proved that belt and bob polishing methods can be employed in conjunction as “hybrid” technique to enable automated overall finishing of complex geometrical components.  相似文献   

14.
The industrial demands for automated machining systems to increase process productivity and quality in milling of aerospace critical safety components requires advanced investigations of the monitoring techniques. This is focussed on the detection and prediction of the occurrence of process malfunctions at both of tool (e.g. wear/chipping of cutting edges) and workpiece surface integrity (e.g. material drags, laps, pluckings) levels. Acoustic emission (AE) has been employed predominantly for tool condition monitoring of continuous machining operations (e.g. turning, drilling), but relatively little attention has been paid to monitor interrupted processes such as milling and especially to detect the occurrence of possible surface anomalies.This paper reports for the first time on the possibility of using AE sensory measures for monitoring both tool and workpiece surface integrity to enable milling of “damage-free” surfaces. The research focussed on identifying advanced monitoring techniques to enable the calculation of comprehensive AE sensory measures that can be applied independently and/or in conjunction with other sensory signals (e.g. force) to respond to the following technical requirements: (i) to identify time domain patterns that are independent from the tool path; (ii) ability to “calibrate” AE sensory measures against the gradual increase of tool wear/force signals; (iii) capability to detect workpiece surface defects (anomalies) as result of high energy transfer to the machined surfaces when abusive milling is applied.Although some drawbacks exist due to the amount of data manipulation, the results show good evidence that the proposed AE sensory measures have a great potential to be used in flexible and easily implementable solutions for monitoring tool and/or workpiece surface anomalies in milling operations.  相似文献   

15.
The effects of friction stir processing (FSP) parameters such as rotational, traverse speeds and tool penetration depth on the formation of fine and defect free magnesium layers were investigated. The achieved microstructures were optically studied, and the microhardness profile of the optimised workpiece was measured. The results show that rotational and traverse speeds as well as their ratio play key roles in achieving a sound friction stir processed workpiece of pure Mg. In addition, at constant rotational and traverse speeds, when the penetration depth increases, the title angle must also increases in order to have a defect free workpiece. At optimum conditions, one pass FSP significantly refined the grain size from 3 mm in the as received magnesium to 14·6 μm in friction stir process layer. The microhardness of the fabricated layer reached to about 1·6 times that of the base metal.  相似文献   

16.
This paper proposes a Pendulum-Based Cutting Test (PBCT) methodology which allows quick cutting tests for surface integrity evaluation along with providing cutting energies associated with particular level of workpiece surface damage, this is backed by an unified cutting energy model that links damage level of machined surface with energy partition in the cutting area. PBCT method could rapidly define the energy transferred to the workpiece that incurs particular magnitude of surface damage without using conventional machine tools and monitor the cutting process while only limited amount of materials is required. A demonstration of the proposed method is presented for Inconel718.  相似文献   

17.
Vitreous bond silicon carbide wheel for grinding of silicon nitride   总被引:1,自引:0,他引:1  
This study investigates the grinding of sintered silicon nitride using a SiC wheel with a fine abrasive grit size and dense vitreous bond. The difference of hardness between the green SiC abrasive and sintered Si3N4 workpiece (25.5 vs. 13.7 GPa) is small. Large grinding forces, particularly the specific tangential grinding forces, are observed in SiC grinding of Si3N4. The measured specific grinding energy is high, 400–6000 J/mm3, and follows an inverse relationship relative to the maximum uncut chip thickness as observed in other grinding studies. The SiC wheel wears fast in grinding Si3N4. The G-ratio varies from 2 to 12. Two unique features in SiC grinding of Si3N4 are the trend of increasing G-ratio at higher material removal rate and the excellent surface integrity, with 0.04–0.1 μm Ra and no visible surface damage. For a specific material removal rate, surface cracks along the grinding direction are generated on the ground surface. The problem of chatter vibration was identified at high material removal rates. Periodic and uneven wheel loading marks and clusters of workpiece surface cracks across the grinding direction could be observed at high material removal rates. This study demonstrates that the SiC grinding wheel can be utilized for precision form grinding of Si3N4 to achieve good surface integrity under a limited material removal rate.  相似文献   

18.
J.C. Aurich  T. Magg 《CIRP Annals》2008,57(1):357-362
This paper presents the potential of a superabrasive electroplated grinding wheel with a defined grain pattern for dry surface grinding operations. The grinding wheel's grain pattern is developed by kinematic simulation with special focus on the undeformed chip thickness. Current experimental investigations of dry grinding operations of hardened heat-treated steel are carried out with a material removal rate of Qw=70mm3/mms. The measured grinding forces, workpiece temperatures, as well as workpiece surface quality and workpiece integrity are compared to wet grinding and a standard superabrasive electroplated grinding wheel as a reference process.  相似文献   

19.
A Ni–Cr–B–Si/10vol%WC coating material has been precision ground to an optical quality surface finish (<10 nm Ra) using a combination of a very stiff precision machine tool, Tetraform “C”, 76 μm CBN grinding wheels and electrolytic in-process dressing (ELID) assisted grinding. When grinding without ELID, surface finish has been shown to be limited by damage to primary and secondary carbides. This damage may be in the form of carbide pull-out or localised fracture and removal of the larger primary WC particulate. ELID assisted grinding helps maintain CBN grit protrusion and sharpness and thus promotes efficient cutting during grinding, minimising pull-out and localised damage to the harder phases within the coating microstructure. ELID therefore improves both the overall surface finish and surface integrity of the workpiece.  相似文献   

20.
针对如何改善零件的已加工表面完整性,提高零件的服役能力,文章基于温度场形状开展切削GH4169的刀具前刀面微槽设计研究,设计并制备了新型微槽刀具,并将原刀具和微槽刀具加工后的工件表面完整性进行对比试验研究,结果表明:微槽结构改变了刀具的平衡力系,使其切削力和切削温度降低,进而使得在推荐切削参数下,使用微槽刀具切削的表面质量优于原刀具,粗糙度降低了22.96%,残余拉应力降低了30.7%,工件表面显微硬度随切削速度的增加而加剧,且微槽刀具切削后的工件硬化程度和深度均有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号