首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
赵鑫  李俊  王温银 《热处理》2012,(1):75-78
对爆裂的锅炉过热器管进行了宏观分析、显微组织分析和晶粒度测量,并与未受热管进行了对比。结果表明,由于锅炉多次超温运行,致使过热器管壁严重氧化、减薄,不足以承受管内水蒸气压力而发生爆裂。  相似文献   

2.
采用化学分析、金相检验及力学性能测定等方法,对锅炉对流管爆裂原因进行了分析。结果表明,长期超温运行而引起的蠕变是导致爆裂的主要原因。  相似文献   

3.
对屏式过热器管进行了宏观检查、金相显微组织观察和分析以及拉伸性能测试。结果表明,该屏式过热器管失效的主要原因是长时超温与短时超温共同作用的结果。  相似文献   

4.
借助光学显微镜、扫描电镜、能谱分析仪、直读光谱仪对某热电厂203钢锅炉水冷壁失效管进行宏观分析、材质复检、断口分析、硬度测试、常温及高温力学性能测试等,分析其爆管原因.结果 表明:该水冷壁管在服役过程中经历了短时超温,且最高温度达到854℃以上,最终导致爆管的发生.  相似文献   

5.
为了弄清某油田注汽锅炉炉管爆裂的原因,分别对爆裂炉管的材质、爆裂炉管及其断口处的宏观形貌、显微组织及注汽锅炉水质等方面进行了全面检验,经分析得出注汽锅炉炉管爆裂是由于超温过载引起的.  相似文献   

6.
过热器20G钢管爆裂原因分析   总被引:2,自引:0,他引:2  
采用金相检验、化学分析、力学性能和扫描电镜对某钢厂锅炉顶棚过热器管爆裂原因进行了分析。结果表明,过热器长期过热导致管胀粗、局部减薄,最终形成裂纹。由于裂纹引起泄漏,使回路其余段内冷却工质的流量减小,导致泄漏处的下游发生短时过热爆管,出现大破口。锅炉短期使用的情况下爆管,且显微组织严重球化,证明失效过热器运行时内管壁温度远远超过额定温度318℃,20G钢安全余量不足是导致爆管的主要原因。  相似文献   

7.
对已服役的航空发动机用GH4033合金二级涡轮叶片榫头部位进行900~1100℃短时超温3 min热处理,之后再进行组织表征和力学性能测试,研究了短时超温过程中合金的组织损伤及其对室温硬度和700℃,430 MPa下持久寿命的影响规律.结果表明,GH4033合金中γ'相颗粒在短时超温过程中发生粗化和回溶现象,当温度达到980℃及以上时,保温3 min后γ'相完全回溶;随着超温温度的升高,晶界碳化物逐渐溶解,1100℃时完全溶解,并造成晶粒开始长大.短时超温后叶片合金的室温硬度随着γ'相的回溶急剧下降,当γ'相完全回溶时室温硬度降低至170 HV左右.合金在700℃,430 MPa下持久寿命随着短时超温温度的升高呈现先增大后急剧降低的规律,其主要受γ'相的回溶与再析出以及晶界碳化物回溶的影响.  相似文献   

8.
某20T/H锅炉低温过热器蛇形管在短短的30天运行过程中,由于严重起温。使3屏过热器管连续发生破裂。针对破裂现象研究了在超温运行条件下,管子内外壁的氧化现象。组织形态及晶粒长大的特征。分析了产生原因,提出了预防措施,保证锅炉安全运行。  相似文献   

9.
超临界参数变压直流炉试运行后水冷壁发生爆管。从宏观检查、材质复核、拉伸实验、金相组织四个方面对水冷壁爆口部位进行原因分析。分析表明:三根水冷壁管泄漏导致其上方的水冷壁管冷却介质不足,产生短时超温爆管。由于现场管子之间相互吹损严重,无法判断第一泄漏点的具体位置以及泄漏的直接原因,推断造成泄漏的原因可能为:原材存在制造缺陷、安装焊接质量不良、鳍片上孔洞漏风导致的管子非正常磨损。  相似文献   

10.
某20T/H锅炉低温过热器蛇形管在短短的30天运行过程中,由于严重超温。使3屏过热器管连续发生破裂。针对破裂现象研究了在超温运动条件下,管子内外壁的氧化现象,组织形态晶粒长大的特征。分析了产生原因,提出了预防措施,保证锅炉安全运行。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号