首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: The possible plasticizing effect of beeswax (viscoelastic wax) and carnauba wax (elastic wax) on tensile and water vapor permeability properties of whey protein isolate (WPI) films was studied. For the experiments, 3 groups of films with different WPI:glycerol ratios (1:1; 1.5:1; 2:1, 2.5:1, and 3:1) were prepared. The 1st group was made without the addition of wax, and the latter 2 groups were made with the addition of beeswax and carnauba wax, respectively, mixing 1 part of wax to 1 part of WPI. Lipid particle size, water vapor permeability, tensile properties, and thickness of films were analyzed and measured. The results show that the incorporation of beeswax produced a plasticizing effect in WPI:glycerol films, whereas carnauba wax produced an anti-plasticizing effect. The moisture barrier properties of WPI:glycerol films benefit from the addition of beeswax, by both increase of the hydrophobic character and decrease of the amount of hydrophilic plasticizer required in the film.  相似文献   

2.
BACKGROUND: A hot‐buffer‐soluble‐solid fraction (HBSS) and an alkaline‐soluble‐solid fraction (ASS) of okra polysaccharides (OKP) were obtained using sequential extraction. These fractions were combined with whey protein isolate (WPI) and glycerol (Gly) plasticizer to form blend edible films. Effects of OKP fraction and content on tensile properties, water vapor permeability (WVP) and oxygen permeability (OP) were determined. RESULTS: HBSS film had significantly higher percent elongation (%E) and lower elastic modulus (EM), WVP and OP than ASS film. Increasing HBSS or ASS content in blend films with WPI significantly reduced film tensile strength and EM and increased film %E and WVP. OP values for WPI–HBSS blend films were significantly lower than OP for WPI or HBSS film. WPI–HBSS and WPI–ASS blend films had lower WVP and OP than WPI films with equivalent tensile properties. CONCLUSIONS: WPI–HBSS blend films have higher WVP and lower OP than WPI film or HBSS film, indicating unique interactions between WPI and HBSS. Compared to WPI film, WPI–HBSS blend films have improved flexibility, stretchability and oxygen barrier. Different HBSS and ASS compositions and structures are responsible for property differences between HBSS and ASS films and between WPI–HBSS and WPI–ASS blend films. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
BACKGROUND: There is a lack of research on producing layered protein–lipid composite films with improved tensile and barrier properties compared to films from individual components. Several film‐forming parameters were hypothesized to influence the extent to which lipids were either dispersed within or layered upon whey protein films. Film‐forming parameters investigated were ratio of whey protein isolate (WPI) to beeswax (BW), homogenization method, sodium chloride (NaCl) concentration, and BW particle size. RESULTS: Film percent elongation (E) increased, while tensile strength (TS) and elastic modulus (EM) decreased when BW was incorporated into WPI films, demonstrating a lubricant effect of the BW. Mean water vapor permeability values for WPI film decreased by 57% when the film composition was modified by the addition of 40% BW. BW phase separation was observed in all of the tested films. Particle size of BW in the film‐forming emulsions was larger in the presence of NaCl (100 mmol L?1), indicating a neutralization of particle charge. However, the addition of NaCl did not improve the moisture barrier of WPI‐BW film over the range of film‐forming conditions used in the study. CONCLUSION: The results from this study are useful in determining formulations and conditions for the production of composite films from WPI and BW with improved tensile and moisture barrier properties. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
A. Longares 《LWT》2004,37(5):545-550
The effect of varying thickness on the water barrier properties, tensile properties and sensory characteristics of glycerol-plasticised whey protein isolate (WPI) films was investigated. Thickness was varied by preparing films with increasingly dilute film forming WPI solutions in the range 9.5-2.3 g protein/100 g. All films had a glycerol to protein ratio of 0.37 (Gly: Pro). Tensile strength (TS), elastic modulus (EM) and film permeance were unaffected by film thickness but maximum load (ML) and % elongation (E) decreased (P<0.05) with decreasing thickness. In a sensory test with crackers and melted cheese, panelists could readily detect the thickest films (79 μm) but not the thinnest films (23 μm) (P<0.05). The results indicate that reducing the thickness of glycerol plasticised WPI films makes them less perceptible in a food system while maintaining moisture barrier and certain tensile properties.  相似文献   

5.
ABSTRACT: The addition of plasticizers increases the flexibility and workability of films based on biopolymers. However, the use of some plasticizers cause undesirable results, such as the migration of these additives out the film or crystallization during shelf life. Thus, the aim of this study was to evaluate the effect of blends with different ratios of sorbitol and glycerol, at 2 plasticizer concentrations, on mechanical, viscoelastic, and water vapor barrier properties of films based on gelatin. The films were prepared with 2 g gelatin/100 mL of water and with 25 or 55 g plasticizer/100 g gelatin. The ratio, glycerol to sorbitol, was studied as 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. The increase of plasticizer concentration from 25 to 55 g plasticizer/100 g gelatin caused an increase of flexibility and reduction of resistance and water vapor barrier as expected. In relation to the effect of the mixture, the increase in the proportion of glycerol caused a reduction of the puncture force, tensile strength, modulus of elasticity, and an increase of the puncture deformation, elongation at break, and water vapor permeability due to the higher plasticizing effect of glycerol. This behavior was explained in terms of molecular weight of the plasticizers, which demonstrated that the studied properties could be considered as functions of the number of molecules of plasticizers in the films.  相似文献   

6.
Barrier and tensile properties were compared for whey protein isolate- (WPI-) based solution-cast films, extruded sheets and extruded sheets subsequently thinned into films by compression. Solution-cast films were made from mixtures of WPI and glycerol (GLY) in water. Sheets were made by feeding WPI, GLY, and water to a twin-screw co-rotating extruder. In each case, candelilla wax (CAN) was added at 0, 5 or 7.5 g CAN/100 g dry mix to determine the effect on the barrier and tensile properties. Compressed extruded films were made by thinning extruded sheets using a Carver Press equipped with heated platens. Water vapor permeability (WVP), oxygen permeability (OP) and tensile properties were measured. Scanning electron microscopy (SEM) images were also taken.  相似文献   

7.
Edible films were prepared from whey protein isolate (WPI), and characterized in order to select a best combination of protein concentration and glycerol (Gly) ratio. 5%, 7% and 9% (w/v) WPI were used at three WPI:Gly ratios (3.6:1; 3:1; and 2:1). 5% WPI with a 3.6:1 WPI:Gly ratio showed the best combination with factors considered being thickness and water vapor permeability (WVP), while the 9% WPI with 3.6:1 WPI:Gly showed the best result as seen from the oxygen permeability (OP). Further studies were conducted by adding pullulan (PUL) at different WPI:PUL ratios (1:0; 1:1; 2:1; 3:1; 4:1; 5:1; 6:1; 8:1; 10:1) to a selected film in order to investigate the effect of pullulan on thickness, OP, WVP, moisture content (MC), film solubility (FS) and morphology using scanning electron microscopy (SEM). WPI–PUL film had a good appearance and 1:1 WPI:PUL resulted in films with greatest values of OP, WVP, MC, FS, and transmittance. The SEM micrographs showed many pinholes and a favorable structure for the low barrier ability. However, addition of PUL at low concentration was good enough to significantly modify these properties, hence improving the potential characteristics of WPI-based films for food applications.  相似文献   

8.
汪敏  陈洁莹  徐磊  蒋希芝  冯敏 《食品科学》2021,42(3):266-272
为开发出一种具有良好性能的可食包装材料,本实验以乳清分离蛋白为成膜基质,添加竹叶抗氧化物和酪蛋白酸钠,制备竹叶抗氧化物/酪蛋白酸钠/乳清分离蛋白复合可食膜(antioxidant of bamboo leaves/sodium caseinate/whey protein isolate composite film,ASWF),分析比较成膜材料质量比、pH值、甘油质量浓度对ASWF断裂拉伸强度、断裂伸长率、水蒸气透过量和透光率等物理性能的影响。结果表明,成膜材料竹叶抗氧化物、酪蛋白酸钠和乳清分离蛋白质量比为1∶1∶10、pH值为8~9、甘油质量浓度为0.04 g/mL时,ASWF断裂拉伸强度和断裂伸长率分别达18.4 MPa和32.8%,水蒸气透过量为10.86 g/(m2·d),透光率为90.2%,具备良好的物理性能。傅里叶变换红外光谱扫描分析结果表明成膜材料间具有良好的相容性。扫描电子显微镜观察结果显示ASWF表面平整光滑,横截面规则、均匀。制备的可食膜对实际试样(鱿鱼干)表现出良好的微生物抑制作用和抗氧化作用。该研究为可食膜的研制提供参考。  相似文献   

9.
The objectives of this research were to examine the mechanical and water vapor barrier properties of the starch/decolorized hsian-tsao leaf gum (dHG) films as a function of dHG and glycerol concentration. Edible film-forming solutions were prepared by mixing tapioca starch with dHG at different starch/dHG ratios to make a total solid content of 2%. In total, 15–40% glycerol was then added based on the dry film matter. Starch/dHG films were obtained by casting. It was found that the puncture strength, tensile strength, and modulus as well as the inverse of relaxation coefficient of starch/dHG films pronouncedly increased with increasing dHG, accompanied with a decreasing tendency in puncture deformation and tensile strain at break. Such results implied that starch interacted with dHG synergistically, resulting in the formation of a new network to improve the mechanical properties of tapioca starch/dHG films. Mechanical strengths of starch/dHG films decreased and water vapor permeability (WVP) at 75% RH increased with increasing glycerol concentration. However, the plasticizing effect of glycerol became less significant at high dHG concentration, particularly for the puncture deformation and tensile strain at break of the films. Water sorption isotherm results indicated that significant water sorption would only occur at high water activity (about 0.75), and generally became more pronounced with increasing glycerol and dHG concentration, but to a lesser extent for the latter. Dynamic mechanical analysis revealed that the major glass transition of starch/dHG films occurred at about −50 °C.  相似文献   

10.
The overall goal of this research was to examine the mechanical, water vapor barrier properties and opacity of films prepared using legume protein concentrates (faba bean, pea, lupin, lentil, and soy) as a function of glycerol concentration (50, 75, or 100% [wt/wt]—relative to the protein weight). Overall, tensile strength (TS) decreased with increasing glycerol concentration, whereas tensile elongation (TE) and water vapor permeability (WVP) increased with increasing glycerol concentration. Film opacity was independent of glycerol concentration. The effect of protein‐type varied considerably depending on the functional property of the film being measured; TS was greatest with faba bean and lowest with lupin, whereas TE was highest for pea, and lowest for soy. Lentil protein films had considerably higher WVP, at the 100% glycerol concentration, as compared to the other protein concentrates. Findings from this study indicate that legume protein concentrates are capable of forming biodegradable, edible films. Overall, pea protein concentrate films showed the most promise for application in terms of strength, elongation, and moisture barrier properties.  相似文献   

11.
Rungsinee Sothornvit  Duck Jun An 《LWT》2010,43(2):279-15153
Whey protein isolate (WPI)/Cloisite 30B organo-clay composite films with different amounts of the clay (0, 5, 10, and 20 g/100 g WPI) were prepared using a solution casting method and their properties were determined to assess the effects of clay content on film properties. The resulting films had an opaque appearance, which depended on the amount of clay added, and a similar gloss. However, the composite films were slightly less transparent compared to the transparent neat WPI films. Film properties, such as surface color and optical properties, varied depending on clay content. The haze index of the WPI/clay composite films as assessed by surface reflectance decreased indicating that the surface of the films was more smooth and homogeneous. The tensile and water vapor barrier properties of the composite films were also influenced by the amount of incorporated clay. In addition, WPI/Cloisite 30B composite films showed a beneficially bacteriostatic effect against Listeria monocytogenes.  相似文献   

12.
ABSTRACT:  Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [ G '], viscous modulus [ G "], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The  G ' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure ( P  < 0.05). However, no difference was observed in  G " values at different homogenization pressures ( P  > 0.05). The viscosity decreased from 644 to 468 kPa·s as the pressure increased from 138 to 207 MPa at 90 °C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.  相似文献   

13.
The effect of plasticizers, glycerol, sorbitol and poly(ethylene glycol) 400 (PEG 400), on mechanical and barrier properties of rice starch film has been investigated. Sorbitol‐ and glycerol‐plasticized starch films appeared homogeneous, clear, smooth, and contained less insoluble particles compared to unplasticized rice starch films. PEG 400 did not form plasticized films of suitable characteristics. The softness and stickiness of films improved with increasing concentrations of glycerol and sorbitol. In general, films plasticized with glycerol and sorbitol displayed a better solubility in water than unplasticized films, i.e. 35% (w/w) glycerol and 45% w/w (sorbitol) (optimum solubility). The tensile strength of films decreased especially in the high concentration regime of plasticizers, between 20–45% (w/w) of plasticizer/rice starch film. Through the entire concentration regime, the tensile strength of glycerol‐plasticized films was significantly lower than that of sorbitol‐plasticized films, but their elongation was larger. The water vapor transmission rate (WVTR) through plasticized films and the oxygen transmission rate (OTR) increased with glycerol and sorbitol concentrations, however, glycerol was revealed to be significantly more effective in reducing the tensile strength as well as increasing the WVTR and the OTR compared to sorbitol. With the higher tensile strength and the smaller OTR and WVTR, the 30% sorbitol‐plasticized film reveals an improved coating performance in terms of a reduction of coating failures.  相似文献   

14.
Edible composite packaging has been developed by blending biocomponents for specific applications, aiming to take advantage of complementary functional properties or to overcome their respective flaws. The aim of this work was to study the effect of incorporation of whey protein isolate (WPI) on the properties of konjac glucomannan (KGM) based films. Five aqueous solutions of KGM and/or WPI were prepared by casting and solvent evaporation of 1:0, 0.8:3.4, 0.6:3.6, 0.4:3.8 and 0:4.2 g KGM:g WPI/100 g solution. Glycerol (Gly) was used as a plasticizer at 1.5 and 1.8 g/100 g solution. The result showed that incorporated WPI proportionally increased transparency of KGM-based films. An increase in proportion of WPI resulted in decreased tensile strength and elastic modulus as well as improved flexibility. The incorporation of WPI into the KGM matrix led to an increase in water insolubility which enhanced product integrity and water resistance. Nevertheless, WPI did not improve water vapor barrier of KGM–WPI films. WPI and blend film with the highest concentration of WPI could be heat sealed at 175 °C. Overall, the range of Gly in this study did not apparently affect properties of the films.  相似文献   

15.
Abstract: Puree prepared from over‐ripe peeled bananas was used as raw material for films processing in a laboratory padder. Pectin and glycerol as plasticizer were added in small concentrations and chitosan nanoparticles (88.79 ± 0.42 nm medium size) incorporated at 0.2% (dry weight basis) as reinforcement material. The mechanical properties, water vapor transmission, thermal stability, and scanning electron microscopy of fractured film surfaces were characterized. Both pectin and glycerol demonstrated an important role in promoting elongation and film handability as was expected. The incorporation of nanoparticles promoted noticeable improvement of the mechanical properties and acted in reducing the water vapor permeation rate, by 21% for films processed with pectin and up to 38% for films processed without pectin, when compared to the control (puree films with no pectin and nanoparticles additions). Microscopic observation revealed a denser matrix when nanoparticles are incorporated into the films. Practical Application: The development of films from fruit purees head to a new strategy for plastic processing from natural resources. The over‐ripe or even waste banana can be adequately prepared for batch films processed with reasonable mechanical and barrier properties, suitable for applications in the food segment. The addition of small fractions of chitosan nanoparticles, form nanocomposites enhancing mechanical and thermal stability broadening potential film applications.  相似文献   

16.
ABSTRACT: Chitosan is a biopolymer obtained by N-deacetylation of chitin, produced from shellfish waste, which may be employed to elaborate edible films or coatings to enhance shelf life of food products. This study was conducted to evaluate the effect of different concentrations of nanofiller (cellulose nanofibers, CNF) and plasticizer (glycerol) on tensile properties (tensile strength—TS, elongation at break—EB, and Young's modulus—YM), water vapor permeability (WVP), and glass transition temperature (Tg) of chitosan edible films, and to establish a formulation to optimize their properties. The experiment was conducted according to a central composite design, with 2 variables: CNF (0 to 20 g/100 g) and glycerol (0 to 30 g/100 g) concentrations in the film (on a dry basis), which was produced by the so-called casting technique. Most responses (except by EB) were favored by high CNF concentrations and low glycerol contents. The optimization was based on maximizing TS, YM, and Tg, and decreasing WVP, while maintaining a minimum acceptable EB of 10%. The optimum conditions were defined as: glycerol concentration, 18 g/100 g; and CNF concentration, 15 g/100 g. AFM imaging of films suggested good dispersion of the CNF and good CNF-matrix interactions, which explains the good performance of the nanocomposite films. Practical Application: Chitosan is a biodegradable polymer which may be used to elaborate edible films or coatings to enhance shelf life of foods. This study demonstrates how cellulose nanofibers (CNF) can improve the mechanical and water vapor barrier properties of chitosan films. A nanocomposite film with 15% CNF and plasticized with 18% glycerol was comparable to some synthetic polymers in terms of strength and stiffness, but with poorer elongation and water vapor barrier, indicating that they can be used for applications that do not require high flexibility and/or water vapor barrier. The more important advantage of such films when compared to synthetic polymer films is their environmentally friendly properties.  相似文献   

17.
This study deals with the effect of whey protein isolate (WPI) and glycerol (GLY) used as a plasticizer on some physical properties of cast whey protein isolate (WPI) films. Films were prepared from heated (80 °C for 30 min) aqueous solutions of WPI at 7, 8, 9 and 10% (w/w), GLY (40%, w/w, of WPI) and WPI at 8% (w/w), GLY (30, 40, and 60%, w/w, of WPI). For all types of films, water vapour permeability for four relative humidity differentials (30–100%, 30–84%, 30–75%, and 30–53%), surface and thermal properties were measured. Varying the proportion of WPI and GLY in edible films had some effect on water vapour permeability, wetting and thermal properties of WPI films. A cumulative effect of both glycerol and protein content was observed on the water vapour permeability increase. Indeed film barrier properties are much better for the lowest WPI (7%) and GLY (40%) contents. GLY increases the degradation temperature and favours film surface wettability whereas protein content did not affects thermal properties of films.  相似文献   

18.
ABSTRACT: The formations of glycerol (Gly)‐plasticized whey protein isolate (WPI)–hydroxypropylmethylcellulose (HPMC) films, blended using different combinations and at different conditions, were investigated. The resulting WPI: Gly‐HPMC films were analyzed for mechanical properties, oxygen permeability (OP), and water solubility. Differences due to HPMC quantity and blend method were determined via SAS software. While WPI: Gly and HPMC films were transparent, blend films were translucent, indicating some degree of immiscibility and/or WPI–HPMC aggregated domains in the blend films. WPI: Gly‐HPMC films were stronger than WPI: Gly films and more flexible and stretchable than HPMC films, with films becoming stiffer, stronger, and less stretchable as the concentration of HPMC increased. However, WPI: Gly‐HPMC blended films maintained the same low OP of WPI: Gly films, significantly lower than the OP of HPMC films. Comparison of mechanical properties and OP of films made by heat‐denaturing WPI before and after blending with HPMC did not indicate any difference in degree of cross‐linking between the methods, while solubility data indicated otherwise. Overall, while adding HPMC to WPI: Gly films had a large effect on the flexibility, strength, stretchability, and water solubility of the film polymeric network, results indicated that HPMC had no effect on OP through the polymer network. WPI–HPMC blend films had a desirable combination of mechanical and oxygen barrier properties, reflecting the combination of hydrogen‐bonding, hydrophobic interactions, and disulfide bond cross‐linking in the blended polymer network.  相似文献   

19.
Khalid Ziani  Veronique Coma 《LWT》2008,41(10):2159-2165
Chitosans with two different deacetylation degree (DD) (60.9% and 96%) were used to elaborate edible films. The influence of the degree of deacetylation and the presence of glycerol and Tween 20 in the formulation on the surface tension of the film forming solutions as well as on the chemical structure, optical and mechanical properties and water vapor permeability (WVP) of the resulting films were studied.IR spectra showed no significant differences on the chemical structures of chitosan of the different films. However, X-ray diffraction analysis indicated that the use of chitosan with higher DD and the use of glycerol as additive resulted in higher crystallinity. Films made of chitosan with the lower DD (60.9%) were found to have higher tensile strength (TS) and elongation (E) in a tensile test. Degree of deacetylation did not have any effect on WVP. The presence of glycerol resulted in less resistant, more elastic and more permeable films.The presence of Tween 20 improved the wettability of film solutions and affected significatively mechanical, optical and barrier properties of the films. A positive interaction between glycerol and Tween 20 was observed for WVP.  相似文献   

20.
ABSTRACT:  Biodegradable titanium dioxide (TiO2)/whey protein isolate (WPI) blend films were made by casting denatured WPI film solutions incorporated with TiO2 nanoparticles. X-ray diffraction, UV-vis spectra, and fluorescence spectra of the films showed the successful incorporation of TiO2 nanoparticles into the WPI matrix and indicated the interactions between TiO2 and WPI. Mechanical tests revealed the antiplasticizing effect of TiO2 nanoparticles on the WPI/TiO2 film. Small amounts (<1 wt%) of added TiO2 nanoparticles significantly increase the tensile properties of WPI film, but also decrease the moisture barrier properties. The addition of higher amounts (>1 wt%) of TiO2 improves moisture barrier properties but lowers the tensile properties of the film. Microstructural evaluation confirmed the aggregation and distribution of TiO2 nanoparticles within the WPI matrix and validated the results of functional properties of the WPI/TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号