首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
2.
Short synthetic oligonucleotides derived from the human telomeric repeat have been studied recently for their ability to fold into four-stranded structures that are thought to be important to their biological function. Because telomeric DNAs are several kilobases in length, however, their folding might well be affected by cooperative or high-order interactions in these long sequences. Here, we present a new molecular system that allows for easy synthesis of very long stretches of the cytosine-rich strand of human telomeric DNA. Small circular DNAs composed of the G-rich sequence of human telomeres were prepared and used as templates in a rolling-circle replication mechanism. To facilitate the synthesis of the repetitive G-rich circles, an orthogonal base-protection strategy that made use of dimethylformamidine-protected guanine nucleobases was developed. Nanometer-scale circles ranging in size from 42 to 54 nucleotides were prepared. Subsequently, we tested the action of various DNA polymerases on these circular templates, and identified DNA Pol I (Klenow fragment) and T7 DNA polymerase as enzymes that are able to generate very long, C-rich telomeric DNA strands. Purification and initial structural examination of these C-rich polymeric products revealed evidence of a folded structure in the polymer.  相似文献   

3.
DNA polymerases catalyze DNA synthesis during the replication, repair, and recombination of DNA. Based on phylogenetic analysis and primary protein sequences, DNA polymerases have been categorized into seven families: A, B, C, D, X, Y, and RT. This review presents generalized data on the catalytic mechanism of action of DNA polymerases. The structural features of different DNA polymerase families are described in detail. The discussion highlights the kinetics and conformational dynamics of DNA polymerases from all known polymerase families during DNA synthesis.  相似文献   

4.
Thermostable bacterial polymerases like Taq, Therminator and Vent exo? are able to perform DNA synthesis by using modified DNA precursors, a property that is exploited in several therapeutic and biotechnological applications. Viral polymerases are also known to accept modified substrates, and this has proven crucial in the development of antiviral therapies. However, non‐thermostable polymerases of bacterial origin, or engineered variants, that have similar substrate tolerance and could be used for synthetic biology purposes remain to be identified. We have identified the α subunit of Escherichia coli polymerase III (Pol III α) as a bacterial polymerase that is able to recognise and process as substrates several pyrophosphate‐modified dATP analogues in place of its natural substrate dATP for template‐directed DNA synthesis. A number of dATP analogues featuring a modified pyrophosphate group were able to serve as substrates during enzymatic DNA synthesis by Pol III α. Features such as the presence of potentially chelating chemical groups and the size and spatial flexibility of the chemical structure seem to be of major importance for the modified leaving group to play its role during the enzymatic reaction. In addition, we could establish that if the pyrophosphate group is altered, deoxynucleotide incorporation proceeds with an efficiency varying with the nature of the nucleobase. Our results represent a great step towards the achievement of a system of artificial DNA synthesis hosted by E. coli and involving the use of altered nucleotide precursors for nucleic acid synthesis.  相似文献   

5.
DNA is being constantly damaged by endo- and exogenous agents such as reactive oxygen species, chemicals, radioactivity, and ultraviolet radiation. Additionally, DNA is inherently labile, and this can result in, for example, the spontaneous hydrolysis of the glycosidic bond that connects the sugar and the nucleobase moieties in DNA; this results in abasic sites. It has long been obscure how cells achieve DNA synthesis past these lesions, and only recently has it been discovered that several specialized DNA polymerases are involved in translesion synthesis. The underlying mechanisms that render one DNA polymerase competent in translesion synthesis while another DNA polymerase fails are still indistinct. Recently two variants of Taq DNA polymerase that exhibited higher lesion bypass ability than the wild-type enzyme were identified by directed-evolution approaches. Strikingly, in both approaches it was independently found that substitution of a single nonpolar amino acid side chain by a cationic side chain increases the capability of translesion synthesis. Here, we combined both mutations in a single enzyme. We found that the KlenTaq DNA polymerase that bore both mutations superseded the wild-type as well as the respective single mutants in translesion-bypass proficiency. Further insights in the molecular basis of the detected gain of translesion-synthesis function were obtained by structural studies of DNA polymerase variants caught in processing canonical and damaged substrates. We found that increased positive charge of the surface potential in the area proximal to the negatively charged substrates promotes translesion synthesis by KlenTaq DNA polymerase, an enzyme that has very limited naturally evolved capability to perform translesion synthesis. Since expanded positively charged surface potential areas are also found in naturally evolved translesion DNA polymerases, our results underscore the impact of charge on the proficiency of naturally evolved translesion DNA polymerases.  相似文献   

6.
Genotoxic stress results in more than 50 000 damaged DNA sites per cell per day. During DNA replication, processive high‐fidelity DNA polymerases generally stall at DNA lesions and have to be displaced by translesion synthesis DNA polymerases, which are able to bypass the lesion. This switch is mediated by mono‐ubiquitination of the processivity factor proliferating cell nuclear antigen (PCNA). To further investigate the regulation of the DNA polymerase exchange, we developed an easy and efficient method to synthesize site‐specifically mono‐ubiquitinated PCNA by click chemistry. By incorporating artificial amino acids that carry an azide (Aha) or an alkyne (Plk) in their side chains, into ubiquitin (Ub) and PCNA, respectively, we were able to link the two proteins site‐specifically by the CuI‐catalyzed azide–alkyne cycloaddition. Finally, we show that the synthetic PCNA–Ub is able to stimulate DNA synthesis by DNA polymerase δ, and that DNA polymerase η has a higher affinity for PCNA–Ub than to PCNA.  相似文献   

7.
In a functioning genetic system, the information‐encoding molecule must form a regular self‐complementary complex (for example, the base‐paired double helix of DNA) and it must be able to encode information and pass it on to new generations. Here we study a benzo‐widened DNA‐like molecule (yDNA) as a candidate for an alternative genetic set, and we explicitly test these two structural and functional requirements. The solution structure of a 10 bp yDNA duplex is measured by using 2D‐NMR methods for a simple sequence composed of T–yA/yA–T pairs. The data confirm an antiparallel, right‐handed, hydrogen‐bonded helix resembling B‐DNA but with a wider diameter and enlarged base‐pair size. In addition to this, the abilities of two different polymerase enzymes (Klenow fragment of DNA pol I (Kf) and the repair enzyme Dpo4) to synthesize and extend the yDNA pairs T–yA, A–yT, and G–yC are measured by steady‐state kinetics studies. Not surprisingly, insertion of complementary bases opposite yDNA bases is inefficient due to the larger base‐pair size. We find that correct pairing occurs in several cases by both enzymes, but that common and relatively efficient mispairing involving T–yT and T–yC pairs interferes with fully correct formation and extension of pairs by these polymerases. Interestingly, the data show that extension of the large pairs is considerably more efficient with the flexible repair enzyme (Dpo4) than with the more rigid Kf enzyme. The results shed light on the properties of yDNA as a candidate for an alternative genetic information‐encoding molecule and as a tool for application in basic science and biomedicine.  相似文献   

8.
With increasing temperature, nucleobases in DNA become increasingly damaged by hydrolysis of exocyclic amines. The most prominent damage includes the conversion of cytosine to uracil and adenine to hypoxanthine. These damages are mutagenic and put the integrity of the genome at risk if not repaired appropriately. Several archaea live at elevated temperatures and thus, are exposed to a higher risk of deamination. Earlier studies have shown that DNA polymerases of archaea have the property of sensing deaminated nucleobases in the DNA template and thereby stalling the DNA synthesis during DNA replication providing another layer of DNA damage recognition and repair. However, the structural basis of uracil and hypoxanthine sensing by archaeal B-family DNA polymerases is sparse. Here we report on three new crystal structures of the archaeal B-family DNA polymerase from Thermococcus kodakarensis (KOD) DNA polymerase in complex with primer and template strands that have extended single stranded DNA template 5’-overhangs. These overhangs contain either the canonical nucleobases as well as uracil or hypoxanthine, respectively, and provide unprecedented structural insights into their recognition by archaeal B-family DNA polymerases.  相似文献   

9.
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.  相似文献   

10.
DNA helicase and polymerase work cooperatively at the replication fork to perform leading-strand DNA synthesis. It was believed that the helicase migrates to the forefront of the replication fork where it unwinds the duplex to provide templates for DNA polymerases. However, the molecular basis of the helicase-polymerase coupling is not fully understood. The recently elucidated T7 replisome structure suggests that the helicase and polymerase sandwich parental DNA and each enzyme pulls a daughter strand in opposite directions. Interestingly, the T7 polymerase, but not the helicase, carries the parental DNA with a positively charged cleft and stacks at the fork opening using a β-hairpin loop. Here, we created and characterized T7 polymerases each with a perturbed β-hairpin loop and positively charged cleft. Mutations on both structural elements significantly reduced the strand-displacement synthesis by T7 polymerase but had only a minor effect on DNA synthesis performed against a linear DNA substrate. Moreover, the aforementioned mutations eliminated synergistic helicase-polymerase binding and unwinding at the DNA fork and processive fork progressions. Thus, our data suggested that T7 polymerase plays a dominant role in helicase-polymerase coupling and replisome progression.  相似文献   

11.
DNA can experience “replication stress”, an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.  相似文献   

12.
13.
14.
Experimental evidence exists that RNA viruses replicate with extremely high mutation rates that result in significant genetic diversity. The diverse nature of viral populations allows rapid adaptation to dynamic environments, and evolution of resistances to vaccines as well as antiviral substances. For DNA viruses that replicate at much greater fidelities, as yet, neither diverse structures in the population nor their responses to increased mutation rates have been sufficiently described. By using the example of DNA bacteriophage T7, we describe the identification of virus-specific DNA polymerase variants with decreased replication fidelities, and their impact on the efficiency of the viral infection cycle.  相似文献   

15.
Recently much effort has been focused on designing unnatural base pairs that are stable and replicated by DNA polymerases with high efficiency and fidelity. This work has helped to identify a variety of nucleobase properties that are capable of mediating the required interbase interactions in the absence of Watson-Crick hydrogen-bonding complementarity. These properties include shape complementarity, the presence of a suitably positioned hydrogen-bond donor in the developing minor groove, and fluorine substitution. In order to help characterize how each factor contributes to base pairing stability and replication, we synthesized and characterized three fluoro-substituted pyridone nucleoside analogues, 3 FP, 4 FP, and 5 FP. Generally, we found that the specific fluorine substitution pattern of the analogues had little impact on unnatural pair or mispair stability, with the exception of mispairs with dG, which were also the most stable. The mispair between dG and 3 FP was less stable than that with 4 FP or 5 FP, which likely resulted from specific interbase interactions. While fluorine substitution had little impact on the synthesis of the unnatural base pairs, it significantly enhanced mispairing with dG. Remarkably, the mispair between dG and 3 FP was the most efficiently synthesized, due to a favorable entropy of activation, which possibly resulted from the displacement of water molecules from dG in the phosphoryl transfer transition state. The more efficient synthesis of the 3 FP-dG mispair, despite its being the least stable of the three, suggests that the determinants of synthesis and stability are distinct. Finally, we found that fluorine substitution significantly increased the rate at which the pyridone-based unnatural base pairs were extended; this suggests that both minor groove hydrogen-bond acceptors and fluorine substituents could be used to simultaneously optimize unnatural base pairs.  相似文献   

16.
A widened DNA base‐pair architecture is studied in an effort to explore the possibility of whether new genetic system designs might possess some of the functions of natural DNA. In the “yDNA” system, pairs are homologated by addition of a benzene ring, which yields (in the present study) benzopyrimidines that are correctly paired with purines. Here we report initial tests of ability of the benzopyrimidines yT and yC to store and transfer biochemical and biological information in vitro and in bacterial cells. In vitro primer extension studies with two polymerases showed that the enzymes could insert the correct nucleotides opposite these yDNA bases, but with low selectivity. PCR amplifications with a thermostable polymerase resulted in correct pairings in 15–20 % of the cases, and more successfully when yT or yC were situated within the primers. Segments of DNA containing one or two yDNA bases were then ligated into a plasmid and tested for their ability to successfully lead the expression of an active protein in vivo. Although active at only a fraction of the activity of fully natural DNA, the unnatural bases encoded the correct codon bases in the majority of cases when singly substituted, and yielded functioning green fluorescent protein. Although the activities with native polymerases are modest with these large base pairs, this is the first example of encoding protein in vivo by an unnatural DNA base pair architecture.  相似文献   

17.
We report on comparative pre-steady-state kinetic analyses of exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment, KF-) and the archaeal Y-family DinB homologue (Dbh) of Sulfolobus solfataricus. We used size-augmented sugar-modified thymidine-5'-triphosphate (T(R)TP) analogues to test the effects of steric constraints in the active sites of the polymerases. These nucleotides serve as models for study of DNA polymerases exhibiting both relatively high and low intrinsic selectivity. Substitution of a hydrogen atom at the 4'-position in the nucleotide analogue by a methyl group reduces the maximum rate of nucleotide incorporation by about 40-fold for KF- and about twelve fold for Dbh. Increasing the size to an ethyl group leads to a further twofold reduction in the rates of incorporation for both enzymes. Interestingly, the affinity of KF- for the modified nucleotides is only marginally affected, which would indicate no discrimination during the binding step. Dbh even has a higher affinity for the modified analogues than it does for the natural substrate. Misincorporation of either TTP or T(Me)TP opposite a G template causes a drastic decline in incorporation rates for both enzymes. At the same time, the binding affinities of KF- for these nucleotides drop by about 16- and fourfold, respectively, whereas Dbh shows only a twofold reduction. Available structural data for ternary complexes of relevant DNA polymerases indicate that both enzymes make close contacts with the sugar moiety of the dNTP. Thus, the varied proficiencies of the two enzymes in processing the size-augmented probes indicate varied flexibility of the enzymes' active sites and support the notion of active site tightness being a criterion for DNA polymerase selectivity.  相似文献   

18.
19.
The vast majority of DNA polymerases use the complementary templating strand of DNA to guide each nucleotide incorporation. There are instances, however, in which polymerases can efficiently incorporate nucleotides in the absence of templating information. This process, known as translesion DNA synthesis, can alter the proper genetic code of an organism. To further elucidate the mechanism of template-independent DNA synthesis, we monitored the incorporation of various nucleotides at the "blunt-end" of duplex DNA by the high-fidelity bacteriophage T4 DNA polymerase. Although natural nucleotides are not incorporated at the blunt-end, a limited subset of non-natural indolyl analogues containing extensive pi-electron surface areas are efficiently utilized by the T4 DNA polymerase. These analogues possess high binding affinities that are remarkably similar to those measured during incorporation opposite an abasic site. In contrast, the k(pol) values are significantly lower during blunt-end extension when compared to incorporation opposite an abasic site. These kinetic differences suggest that the single-stranded region of the DNA template plays an important role during polymerization through stacking interactions with downstream bases, interactions with key amino acid residues, or both. In addition, we demonstrate that terminal deoxynucleotide transferase, a template-independent enzyme, can efficiently incorporate many of these non-natural nucleotides. However, that this unique polymerase cannot extend large, bulky non-natural nucleotides suggests that elongation is limited by steric constraints imposed by structural features present within the polymerase. Regardless, the kinetic data obtained from using either DNA polymerase indicate that template-independent synthesis can occur without the contributions of hydrogen-bonding interactions and suggest that pi-electron interactions play an important role in polymerization efficiency when templating information is not present.  相似文献   

20.
A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space. The functional lifetime of the encapsulated segregation system could be prolonged by equipping it with ATP-regenerating and oxygen-scavenging systems. Finally, we showed that DNA replication and segregation processes could be coupled in vitro by using condensed DNA nanoparticles resulting from DNA replication. ParM spindles extended over tens of micrometers and could thus be used for segregation in compartments that are significantly longer than bacterial cell size. Overall, this work demonstrates the successful bottom-up assembly and coupling of molecular machines that mediate replication and segregation, thus providing an important step towards the development of a fully functional minimal cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号