共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
医学图像存在病变区域和背景区域,病变区域是分割的重点。针对传统分水岭算法对噪声敏感和易于产生过分割的问题,提出了一种将多尺度形态学边缘检测、模糊增强和控制标记符分水岭相结合的分割策略。该方法首先结合大结构元素和小结构元素各自的优点,用多尺度形态学边缘检测降弱过分割;其次用模糊增强算法使原始医学图像中粗细的边缘都能够得到增强;最后采用基于前景和背景标记的分水岭分割算法进行分割。仿真实验表明,该算法不仅可以有效的克服分水岭变换严重的过分割问题,得到有意义的区域分割,而且还具有较强的区域轮廓定位能力,不需要再进行后续的合并处理,算法简单,同时具有多尺度的特点,能够适应医学图像分类与信息提取的需求。 相似文献
3.
在进行分水岭图像分割时,由于对噪声及灰度变化的敏感性,将得到过度分割的图像.为了克服这种缺点,利用小波多分辨率分析特性及图像增强对图像进行处理,去除大量的噪声信息,保留图像边缘的细节信息,并使图像边缘像素灰度值得到增强,减少由噪声带来的过度分割;对降噪增强后的图像使用形态学梯度算法及控制标记符的分水岭分割方法能够进一步减少由于灰度变化小带来的过度分割,从而较好地解决了过度分割问题[1]. 相似文献
4.
5.
图像分割作为图像处理中最基础的研究领域之一,占有很重要的地位,是大多数图像分析和处理的不可替代并且是首要步骤的一个基础环节,在理论研究和实际应用中都得到了人们广泛指重视,目前已提出了多种不同的图像分割方法,总体上来说这些算法主要建立在基于图像本身的相似性上,在许多应用领域都获得了成功,但是没有一种方法适用于所有的图像。分水岭算法近年来得到比较广泛的应用,此次研究中用基于形态学的分水岭分割方法对图像处理,进行仿真,与其他方法相比可以较好的分割对象。 相似文献
6.
7.
基于梯度重建与形态学分水岭算法的图像分割 总被引:1,自引:3,他引:1
由于分水岭算法存在着过分割的问题,文章提出了一个有效解决该问题的方法。首先,在图像预处理过程中先对图像进行形态学滤波,消除部分噪声;其次,采用形态学求梯度的方法得到原始图像的梯度图并对其进行开闭重建,在保留区域重要轮廓的同时去除噪声和图像细节;第三,对重建后的梯度图像进行基于标记约束的分水岭分割。试验结果表明:该方法能够很好地抑制过分割,同时通过结构元素的选择而具备一定的灵活性,整个过程无需进行合并处理,从而降低了分割的复杂性。 相似文献
8.
基于分水岭算法的红外图像分割方法 总被引:17,自引:3,他引:14
本文采用分水岭算法对红外图像进行分割,针对其存在的过分割问题以及红外图像的特点,提出了分割区域边界平均灰度及其面积对过分割区域进行合并,以得到有意义的分割结果。本算法利用空中红外目标图像进行了实验,实验表明,本算法适用于红外目标图像,并且效果良好。 相似文献
9.
为了克服分水岭算法中的过分割问题,提出了一种基于多尺度滤波和自适应标记提取的分水岭新算法.首先对HSV空间中的V分量进行多尺度滤波,并把滤波后的图像转换到RGB空间;再计算梯度,并对其进行多尺度滤波;然后利用H-minima变换进行自适应标记提取;最后对修改后的梯度图像进行分水岭变换.实验结果表明:与其他改进的分水岭算法相比,此算法对于改善过分割现象有明显的效果,能够获得具有实际意义且更合理的分割区域. 相似文献
10.
荣亚琪;张丽娟;崔金利;苏伟;盖梦野 《液晶与显示》2022,37(9):1190-1198
对血液涂片图像中的红细胞进行精确分割是一项重要的技术,也是一个难题,主要是因为红细胞经常重叠,没有明显边界。针对此问题,本文提出一种基于U-Net++和神经常微分方程(NeuralOrdinaryDifferentialEquations,NODE)的深度学习网络NODE-UNet++用于红细胞的初步分割,再利用标记分水岭算法分割血液涂片图像中的粘连红细胞。首先对图像进行裁剪和标注,突出待分割区域;然后应用新的语义分割体系结构NODE-UNet++对预处理后的图像进行初始分割得到概率灰度图;最后采用标记分水岭算法将灰度图中的粘连红细胞分离,得到最终红细胞分割结果图。实验结果表明,Dice系数达到96.89%、平均像素准确率达到98.97%、平均交并比达到96.33%。通过对不同血液涂片图像的分割结果表明,该方法能高效精确地提取每个红细胞,满足后续红细胞图像处理的需求。 相似文献
11.
针对传统分水岭算法对噪声敏感和易于产生过分割的问题,提出了一种将同态滤波增强与控制标记符分水岭相结合的分割策略.该方法先进行同态滤波增强预处理,再采用改进控制标记符的分水岭分割算法进行分割.仿真实验表明,提出的算法很好地抑制了过分割,实现了有意义的医学图像区域分割,同时还具有较强的区域轮廓定位能力,不需要再进行后续的合并处理,算法简单,并且能够适应医学图像分类与信息提取的需求. 相似文献
12.
分水岭算法是一种高效的图像分割算法,能够准确地对图像进行基于区域的分割,但是存在易过分割的问题.为此本文提出一种改进的分水岭算法:首先,对彩色图像进行频谱包络滤波并计算彩色梯度获得梯度图像,再采取一种自适应设定参数的H-minima技术,对梯度图像的极小值区域进行标记;然后,对已标记极小值区域的梯度图像进行分水岭分割;最后,计算分水岭分割所得各区域的颜色矩,作为该区域的颜色特征,并对这些区域进行近邻传播聚类获得分割结果.通过与近年来其它改进的分水岭算法和采用聚类的图像分割算法实验比较,本文所提算法能更加有效地抑制过分割,提高分割准确率,具有良好的自适应性和鲁棒性. 相似文献
13.
多尺度形态梯度算法及其在图像分割中的应用 总被引:14,自引:0,他引:14
分水岭变换是一种适用于图像分割的强有力的形态工具.然而,基于分水岭变换的图像分割方法的性能在很大程度上依赖于用来计算待分割图像梯度的算法.本文首先提出了一种计算图像形态梯度的多尺度算法,对阶跃边缘和"模糊"边缘进行了有效的处理其次,提出了一种去除因噪声或量化误差造成的局部"谷底"的算法.实验结果表明,采用本文算法后进行分水岭变换,即使不进行区域合并也能产生有意义的分割,极大地减轻了计算负担. 相似文献
14.
基于形态学尺度空间和梯度修正的分水岭分割 总被引:1,自引:0,他引:1
分水岭是一种有效的图像分割方法,但存在过分割现象,为此提出了一种基于形态学尺度空间和梯度修正的分水岭图像分割方法,该方法利用形态学混合开闭重建尺度空间和梯度修正技术,在平滑原始图像的同时保留了重要的区域轮廓而去除了易造成过分割的区域细节和噪声,克服了传统的形态学开闭尺度空间在平滑细节和噪声时,部分重要区域轮廓也被平滑及不满足尺度因果性的问题。对平滑后的图像采用梯度修正分水岭变换,保持了尺度和分割区域数目间的因果性,进一步消除了标准分水岭的过分割现象。仿真实验表明,该方法能有效地消除过分割现象,分割的区域数目满足尺度因果性,且具有较高的区域轮廓定位能力。 相似文献
16.
17.
在高强度超声聚焦(HIFU)治疗中,图像自动导航是整个治疗过程的关键步骤.针对超声肿瘤图像分割提出了两种算法,分别为梯度阈值法和区域合并法.其中梯度阈值法针对分水岭过分割的缺陷,选取小于设定的梯度阈值的点作为分水岭变换的种子点,从而很好地抑制了过分割现象;区域合并法首先通过分水岭变换将图像过分割成许多具有区域均质性的超像素,然后基于最小描述(MDL)原则进行合并,将拥有相似纹理特征的小区域聚类在一起,达到抑制过分割的目的.实验结果表明这两种算法有效地解决了分水岭变换过分割的问题,同时能够很好地应用到超声肿瘤图像分割中. 相似文献
18.
图像中的噪声或非规则细节干扰易导致形态学 分水岭产生较严重的过分割,为了在消除过分割的同时尽可能 保持图像目标边界的准确定位,提出了一种基于面积约束和自适应梯度修正的分水岭图像分 割方法。首先对图像进行梯 度变换,采用区域面积约束滤除狭小高梯度尖峰对应的噪声和非规则细节;然后建立梯度级 与结构元素大小之间的函数 关系,并以相对应的结构元素对梯度图像进行粘性形态学(VM)闭运算,消除低梯度噪声及非 规则细节,实现梯度图像的自适 应修正,由于VM闭运算对梯度图像进行修正时,对目标仅作轻度或不作修正,因 而能够最大限度的保持目标轮 廓的准确定位,而对噪声和非规则细节则采用较大尺寸的结构元素进行较大幅度修正,从而 消除产生过分割的因素;最 后对修正图像进行分水岭分割。实验结果表明,本文方法能够在消除过分割的同时,保持目 标轮廓的准确定位。 相似文献
19.
针对肺部CT图像因各组织灰度不均匀、结构复杂等因素造成双肺边界难以准确分割的问题,提出了一种多阈值和标记分水岭相融合的肺部分割方法。首先采用多阈值法对肺部CT图像进行粗分割,并去除图像中气管与主支气管;然后采用标记控制分水岭方法进行精分割,并利用形态学运算对肺实质边缘修补,最后采用临床肺CT图像在Matlab 2012平台上对算法性能进行仿真测试。结果表明,本文方法可以较好保留肺部CT图像的边界信息,提高了肺部CT图像分割精度,误分和错分概率大幅度下降,取得了十分理想的分割结果,为肺部疾病临床医学诊断提供了有价值的参考信息。 相似文献
20.
自适应整体变分(Total Variation,TV)图像平滑模型能有效去除噪声,具有较强的图像保征能力.基于多相水平集的Chan-Vese图像分割模型能有效地实现多质图像的分割.将自适应TV图像平滑方法和Chan-Vese图像分割方法有机整合,提出了自适应TV的Chan-Vese图像分割方法.实验表明,该方法能得到较好的分割结果. 相似文献