共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目前的电气设备多是由多种集合的数字电路集成而成,对于电路故障的维护与测试增加了一定的难度,所以对于大规模的集成电路维护与测试的方法成为我们的研究课题。本文设计并实现了基于冲突赋值的冗余故障分析算法,并且对以ISCAS85电路与ISCAS89电路为国际标准测试电路,进行实验,因为ISCAS85电路与ISCAS89电路使用范围大,涉及领域广,具有实际应用的价值。采用对ISCAS85电路与ISCAS89电路的实验,采用冗余故障识别程序进行识别计算实验,结果表明该算法可以有效的测试数字电路冗余故障。 相似文献
3.
4.
针对军事领域的命名实体识别问题,提出一种基于BiLSTM-CRF的实体识别方法,旨在识别军事文本中的人名、军用地名、军事机构名、武器装备、设施目标、部队番号等军事命名实体。使用词嵌入方法自动学习中文字符的分布式表示作为模型输入;利用双向长短时记忆(Bi-directional Long-Short Term Memory,BiLSTM)神经网络处理输入的字符向量序列,统筹上下文语义学习任务特征;将学习到的特征接入线性链式条件随机场(CRF)进行军事命名实体标注,获得命名实体识别结果并输出。在人工构建数据集上的实验结果表明,提出的方法能够很好地完成军事命名实体识别任务。 相似文献
5.
6.
7.
针对现有铁路信号设备故障识别算法特征提取不准确导致正确率偏低的问题,提出了深度信念网络(DBN)的故障识别模型。该模型首先利用无监督训练方法对DBN的多个堆叠受限玻尔兹曼机(RBM)进行预训练,获得网络初始参数;然后,结合铁路信号设备识别问题,构建BP神经网络,利用有标签样本进行反向传播训练,实现网络参数微调。实验结果表明,该模型避免特征提取的人工操作,能够有效实现铁路信号设备故障的准确智能识别。 相似文献
8.
9.
讨论了虹膜图像定位等预处理方法,并提出了基于二进小波变换过零检测的虹膜图像识别算法,利用图像在不同分辨率下的特征表示,对虹膜上的采样同心圆计算不同分辨率下的过零小波变换,产生1-D信号,然后对它用相异度函数与模板特征比较。实验表明,该方法克服了漂移、旋转和比例放缩带来的局限,并且识别率高,效果良好。 相似文献
10.
命名实体识别是自然语言处理中的热点研究方向之一,目的是识别文本中的命名实体并将其归纳到相应的实体类型中。首先阐述了命名实体识别任务的定义、目标和意义,分析提出了命名实体识别的主要难点在于领域命名实体识别局限性、命名实体表述多样性和歧义性、命名实体的复杂性和开放性;然后介绍了命名实体识别研究的发展进程,从最初的规则和字典方法到传统的统计学习方法再到现在的深度学习方法,不断地将新技术应用到命名实体识别研究中以提高性能;接着系统梳理了当下命名实体识别任务中的若干热门研究点,分别是匮乏资源下的命名实体识别、细粒度命名实体识别、嵌套命名实体识别以及命名实体链接;最后针对评判命名实体识别模型的好坏,总结了常用的若干数据集和实验测评指标,并给出了未来的研究建议。 相似文献
11.
语音作为传递信息的一种常用手段,在人们的日常生活中有着非常重要的地位。随着科学的发展,语音识别愈来愈受到人们的重视。本文提出一种基于流形学习的特征提取方法———邻域保持嵌入( NPE)算法用于语音识别领域。流形学习是近几十年发展起来的降维方法,在图像识别领域已有应用,但在语音识别领域的应用非常之少。实验结果表明该算法可取得较好的识别率,同时所提取的特征稳定,计算速度快。 相似文献
12.
目的:比较条件随机场、长短期记忆模型、BiLSTM-CRF和使用Bert预训练字符向量的BiLSTM-CRF四种命名实体识别模型.方法:分析比较四种模型在人民日报数据集和MSRA数据集上对人名、地点和机构三类实体的识别性能.结果:单一神经网络LSTM在缺乏训练数据支持的结果表现不如CRF,而使用了Bert预训练字符向量... 相似文献
13.
14.
命名实体识别是自然语言处理领域的一项关键任务,其目的在于从自然语言文本中识别出具有特定含义的实体,如人名、地名、机构名和专有名词等。在命名实体识别任务中,研究人员提出过多种方法,包括基于知识和有监督的机器学习方法。近年来,随着互联网文本数据规模的快速扩大和深度学习技术的快速发展,深度学习模型已成为命名实体识别的研究热点,并在该领域取得显著进展。文中全面回顾现有的命名实体识别深度学习技术,主要分为四类:基于卷积神经网络模型、基于循环神经网络模型、基于Transformer模型和基于图神经网络模型的命名实体识别。此外,对深度学习的命名实体识别架构进行了介绍。最后,探讨命名实体识别所面临的挑战以及未来可能的研究方向,以期推动命名实体识别领域的进一步发展。 相似文献
15.
由于人们对美好生活的向往愈发强烈,消费已经成为拉动我国经济发展的重要引擎,而在消费过程中强化消费体验也是提升消费者服务效益的关键所在。为了能够在提升消费体验的同时降低人力的投入,引入智能化商品识别工具,研究一种利用注意力机理进行特征抽取与学习的方法。文章简要介绍了深度学习方法和基于深度学习的商品识别方法,探讨了深度学习多目标商品检测算法,对比分析了改进后的MaskR-CNN,可有效防止因网络复杂性的提高而造成的性能下降,从而提高了检测效率和检测精度。 相似文献
16.
基于层叠隐马尔可夫模型的中文命名实体识别 总被引:29,自引:0,他引:29
提出了一种基于层叠隐马尔可夫模型的中文命名实体一体化识别方法,旨在将人名识别、地名识别以及机构名识别等命名实体识别融合到一个相对统一的理论模型中。首先在词语粗切分的结果集上采用底层隐马尔可夫模型识别出普通无嵌套的人名、地名和机构名等,然后依次采取高层隐马尔可夫模型识别出嵌套了人名、地名的复杂地名和机构名。在对大规模真实语料库的封闭测试中,人名、地名和机构识别的F-1值分别达到92.55%、94.53%、86.51%。采用该方法的系统ICTCLAS在2003年5月SIGHAN举办的第一届汉语分词大赛中名列前茅。 相似文献
17.
命名实体识别是中医智能化发展的基石.针对中医文本数据挖掘中实体识别困难的问题,构建了基于Bert-BiLSTM-CRF的命名实体识别模型.通过Bert模型在字向量的构建过程中融入注意力机制,利用BiLSTM进行特征提取,并将特征输入CRF模型之中完成最终的训练.实验选取《伤寒论》作为训练集以及测试集,划分症状、疾病名称... 相似文献
18.
中文临床电子病历命名实体识别是实现智慧医疗的基本任务之一.本文针对传统的词向量模型文本语义表示不充分,以及循环神经网络(RNN)模型无法解决长时间依赖等问题,提出一个基于XLNet的中文临床电子病历命名实体识别模型XLNet-BiLSTM-MHA-CRF,将XLNet预训练语言模型作为嵌入层,对病历文本进行向量化表示,解决一词多义等问题;利用双向长短时记忆网络(BiLSTM)门控制单元获取句子的前向和后向语义特征信息,将特征序列输入到多头注意力层(multi-head attention,MHA);利用MHA获得特征序列不同子空间表示的信息,增强上下文语义的关联性,同时剔除噪声;最后输入条件随机场CRF识别全局最优序列.实验结果表明,XLNet-BiLSTM-Attention-CRF模型在CCKS-2017命名实体识别数据集上取得了良好的效果. 相似文献
19.
20.
针对基于识别门限的奇偶矢量法等双星故障识别算法存在较大误警率、漏检率以及故障偏差抵消致使双星故障正确识别率较低的问题,提出了一种改进的用于双星故障识别的接收机自主完好性监测算法.在奇偶矢量法的基础上,构造故障特征平面和改进奇偶矢量,分析二者之间的几何特征与卫星故障的关系,并设计相应算法识别故障卫星.该算法不受识别门限的影响,避免了由识别门限引起的识别率较低的不足.半物理仿真结果显示:改进后的算法故障识别率达到90%以上,与直接利用奇偶矢量法相比,可以显著提高双星故障识别率. 相似文献