首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.  相似文献   

2.
Eleven fatty acid analogues incorporating four‐membered carbocycles (cyclobutenes, cyclobutanes, cyclobutanones, and cyclobutanols) were investigated for the ability to inhibit the growth of Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb). A number of the analogues displayed inhibitory activity against both mycobacterial species in minimal media. Several of the molecules displayed potent levels of inhibition against Mtb, with MIC values equal to or below those observed with the anti‐tuberculosis drugs D ‐cycloserine and isoniazid. In contrast, two of the analogues that display the greatest activity against Mtb failed to inhibit E. coli growth under either set of conditions. Thus, the active molecules identified herein may provide the basis for the development of anti‐mycobacterial agents against Mtb.  相似文献   

3.
Tuberculosis (TB) remains a significant global health problem for which new therapeutic options are sorely needed. The ability of the causative agent, Mycobacterium tuberculosis, to reside within host macrophages and form biofilm-like communities contributes to the persistent and drug-tolerant nature of the disease. Compounds that can prevent or reverse the biofilm-like phenotype have the potential to serve alongside TB antibiotics to overcome this tolerance, and decrease treatment duration. Using Mycobacterium smegmatis as a surrogate organism, we report the identification of two new 2-aminoimidazole compounds that inhibit and disperse mycobacterial biofilms, work synergistically with isoniazid and rifampicin to eradicate preformed M. smegmatis biofilms in vitro, are nontoxic toward Galleria mellonella, and exhibit stability in mouse plasma.  相似文献   

4.
Tuberculosis (TB) is the leading cause of death among HIV-1-infected individuals and Mycobacterium tuberculosis (Mtb) co-infection is an early precipitate to AIDS. We aimed to determine whether Mtb strains differentially modulate cellular susceptibility to HIV-1 infection (cis- and trans-infection), via surface receptor interaction by their cell envelope lipids. Total lipids from pathogenic (lineage 4 Mtb H37Rv, CDC1551 and lineage 2 Mtb HN878, EU127) and non-pathogenic (Mycobacterium bovis BCG and Mycobacterium smegmatis) Mycobacterium strains were integrated into liposomes mimicking the lipid distribution and antigen accessibility of the mycobacterial cell wall. The resulting liposomes were tested for modulating in vitro HIV-1 cis- and trans-infection of TZM-bl cells using single-cycle infectious virus particles. Mtb glycolipids did not affect HIV-1 direct infection however, trans-infection of both R5 and X4 tropic HIV-1 strains were impaired in the presence of glycolipids from M. bovis, Mtb H37Rv and Mtb EU127 strains when using Raji-DC-SIGN cells or immature and mature dendritic cells (DCs) to capture virus. SL1, PDIM and TDM lipids were identified to be involved in DC-SIGN recognition and impairment of HIV-1 trans-infection. These findings indicate that variant strains of Mtb have differential effect on HIV-1 trans-infection with the potential to influence HIV-1 disease course in co-infected individuals.  相似文献   

5.
Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.  相似文献   

6.
One of the major reasons for the wide epidemicity of tuberculosis and for the necessity for extensive chemotherapeutic regimens is that the causative agent, Mycobacterium tuberculosis, has an ability to become dormant. Therefore, new lead compounds that are anti‐bacterial against M. tuberculosis in both active and dormant states are urgently needed. Marine sponge diterpene alkaloids, agelasines B, C, and D, from an Indonesian marine sponge of the genus Agelas were rediscovered as anti‐dormant‐mycobacterial substances. Based on the concept that the transformants over‐expressing targets of antimicrobial substances confer drug resistance, strains resistant to agelasine D were screened from Mycobacterium smegmatis transformed with a genomic DNA library of Mycobacterium bovis BCG. Sequence analysis of the cosmids isolated from resistant transformants revealed that the responsible gene was located in the genome region between 3475.051 and 3502.901 kb. Further analysis of the transformants over‐expressing the individual gene contained in this region indicated that BCG3185c (possibly a dioxygenase) might be a target of the molecule. Moreover, agelasine D was found to bind directly to recombinant BCG3185c protein (KD 2.42 μm), based on surface plasmon resonance (SPR). This evidence strongly suggests that the BCG3185c protein is the major target of agelasine D, and that the latter is the anti‐mycobacterial substance against dormant bacilli.  相似文献   

7.
In this study, we explored the pharmaceutically underexploited mycobacterial gyrase ATPase (GyrB) domain as a template for a structure‐based virtual screening of our in‐house (BITS Pilani) compound collection to discover new inhibitors targeting Mycobacterium tuberculosis (M.tb.) The hit identified was further customized by using a combination of molecular docking and medicinal chemistry strategies to obtain an optimized analogue displaying considerable in vitro enzyme efficacy and bactericidal properties against the M.tb. H37Rv strain. The binding affinity of the ligand toward the GyrB domain was reascertained by differential scanning fluorimetry experiments. Further evaluation of the hERG toxicity (a major limitation among the previously reported N‐linked aminopiperidine analogues) indicated these molecules to be completely devoid of cardiotoxicity, a significant achievement within this class.  相似文献   

8.
9.
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.  相似文献   

10.
Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.  相似文献   

11.
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatis aa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.  相似文献   

12.
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. Active tuberculosis is characterized by neutrophil-mediated lung pathology and tissue destruction. Previously, we showed that preventing M. tuberculosis induced necrosis in human neutrophils by inhibition of myeloperoxidase (MPO) promoted default apoptosis and subsequent control of mycobacteria by macrophages taking up the mycobacteria-infected neutrophils. To translate our findings in an in vivo model, we tested the MPO inhibitor 4-aminobenzoic acid hydrazide (ABAH) in C3HeB/FeJ mice, which are highly susceptible to M. tuberculosis infection manifesting in neutrophil-associated necrotic granulomas. MPO inhibition alone or as co-treatment with isoniazid, a first-line antibiotic in tuberculosis treatment, did not result in reduced bacterial burden, improved pathology, or altered infiltrating immune cell compositions. MPO inhibition failed to prevent M. tuberculosis induced neutrophil necrosis in C3Heb/FeJ mice in vivo as well as in murine neutrophils in vitro. In contrast to human neutrophils, murine neutrophils do not respond to M. tuberculosis infection in an MPO-dependent manner. Thus, the murine C3HeB/FeJ model does not fully resemble the pathomechanisms in active human tuberculosis. Consequently, murine infection models of tuberculosis are not necessarily adequate to evaluate host-directed therapies targeting neutrophils in vivo.  相似文献   

13.
Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a “Goldilocks” amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria.  相似文献   

14.
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 μM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.  相似文献   

15.
Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug‐resistant TB. Herein we explored the potential of an alternative class of molecules as anti‐TB agents. Thus, a series of novel 3‐substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL?1, whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50>100 μm ). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug‐resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine‐based derivatives promising leads for further development.  相似文献   

16.
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm , whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm . In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.  相似文献   

17.
A series of eighteen 4-chlorocinnamanilides and eighteen 3,4-dichlorocinnamanilides were designed, prepared and characterized. All compounds were evaluated for their activity against gram-positive bacteria and against two mycobacterial strains. Viability on both cancer and primary mammalian cell lines was also assessed. The lipophilicity of the compounds was experimentally determined and correlated together with other physicochemical properties of the prepared derivatives with biological activity. 3,4-Dichlorocinnamanilides showed a broader spectrum of action and higher antibacterial efficacy than 4-chlorocinnamanilides; however, all compounds were more effective or comparable to clinically used drugs (ampicillin, isoniazid, rifampicin). Of the thirty-six compounds, six derivatives showed submicromolar activity against Staphylococcus aureus and clinical isolates of methicillin-resistant S. aureus (MRSA). (2E)-N-[3,5-bis(trifluoromethyl)phenyl]- 3-(4-chlorophenyl)prop-2-enamide was the most potent in series 1. (2E)-N-[3,5-bis(Trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-enamide, (2E)-3-(3,4-dichlorophenyl)-N-[3-(trifluoromethyl)phenyl]prop-2-enamide, (2E)-3-(3,4-dichloro- phenyl)-N-[4-(trifluoromethyl)phenyl]prop-2-enamide and (2E)-3-(3,4-dichlorophenyl)- N-[4-(trifluoromethoxy)phenyl]prop-2-enamide were the most active in series 2 and in addition to activity against S. aureus and MRSA were highly active against Enterococcus faecalis and vancomycin-resistant E. faecalis isolates and against fast-growing Mycobacterium smegmatis and against slow-growing M. marinum, M. tuberculosis non-hazardous test models. In addition, the last three compounds of the above-mentioned showed insignificant cytotoxicity to primary porcine monocyte-derived macrophages.  相似文献   

18.
Although the therapeutic effect of mycobacteria as antitumor agents has been known for decades, recent epidemiological and experimental studies have revealed that mycobacterium-related chronic inflammation may be a possible mechanism of cancer pathogenesis. Mycobacterium tuberculosis and non-tuberculous Mycobacterium avium complex infections have been implicated as potentially contributing to the etiology of lung cancer, whereas Mycobacterium ulcerans has been correlated with skin carcinogenesis. The risk of tumor development with chronic mycobacterial infections is thought to be a result of many host effector mechanisms acting at different stages of oncogenesis. In this paper, we focus on the nature of the relationship between mycobacteria and cancer, describing the clinical significance of mycobacteria-based cancer therapy as well as epidemiological evidence on the contribution of chronic mycobacterial infections to the increased lung cancer risk.  相似文献   

19.
New triclosan (TRC) analogues were evaluated for their activity against the enoyl–acyl carrier protein reductase InhA in Mycobacterium tuberculosis (Mtb). TRC is a well‐known inhibitor of InhA, and specific modifications to its positions 5 and 4′ afforded 27 derivatives; of these compounds, seven derivatives showed improved potency over that of TRC. These analogues were active against both drug‐susceptible and drug‐resistant Mtb strains. The most active compound in this series, 4‐(n‐butyl)‐1,2,3‐triazolyl TRC derivative 3 , had an MIC value of 0.6 μg mL?1 (1.5 μM ) against wild‐type Mtb. At a concentration equal to its MIC, this compound inhibited purified InhA by 98 %, and showed an IC50 value of 90 nM . Compound 3 and the 5‐methylisoxazole‐modified TRC 14 were able to inhibit the biosynthesis of mycolic acids. Furthermore, mc24914, an Mtb strain overexpressing inhA, was found to be less susceptible to compounds 3 and 14 , supporting the notion that InhA is the likely molecular target of the TRC derivatives presented herein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号