首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The study of transporters is highly challenging, as they cannot be isolated or studied in suspension, requiring a cellular or vesicular system, and, when mediated by more than one carrier, difficult to interpret. Nucleoside analogues are important drug candidates, and all protozoan pathogens express multiple equilibrative nucleoside transporter (ENT) genes. We have therefore developed a system for the routine expression of nucleoside transporters, using CRISPR/cas9 to delete both copies of all three nucleoside transporters from Leishmania mexicana (ΔNT1.1/1.2/2 (SUPKO)). SUPKO grew at the same rate as the parental strain and displayed no apparent deficiencies, owing to the cells’ ability to synthesize pyrimidines, and the expression of the LmexNT3 purine nucleobase transporter. Nucleoside transport was barely measurable in SUPKO, but reintroduction of L. mexicana NT1.1, NT1.2, and NT2 restored uptake. Thus, SUPKO provides an ideal null background for the expression and characterization of single ENT transporter genes in isolation. Similarly, an LmexNT3-KO strain provides a null background for transport of purine nucleobases and was used for the functional characterization of T. cruzi NB2, which was determined to be adenine-specific. A 5-fluorouracil-resistant strain (Lmex5FURes) displayed null transport for uracil and 5FU, and was used to express the Aspergillus nidulans uracil transporter FurD.  相似文献   

2.
Guanosine, released extracellularly from neurons and glial cells, plays important roles in the central nervous system, including neuroprotection. The innovative DELFIA Eu‐GTP binding assay was optimized for characterization of the putative guanosine receptor binding site at rat brain membranes by using a series of novel and known guanosine derivatives. These nucleosides were prepared by modifying the purine and sugar moieties of guanosine at the 6‐ and 5′‐positions, respectively. Results of these experiments prove that guanosine, 6‐thioguanosine, and their derivatives activate a G protein‐coupled receptor that is different from the well‐characterized adenosine receptors.  相似文献   

3.
The binding of nucleosides to abasic site (AP site)-containing DNA duplexes (AP-DNAs) carrying complementary nucleosides opposite the AP site was investigated by thermal denaturation and isothermal titration calorimetric (ITC) experiments. Purine nucleosides show high affinities (K(d) =14.1 μM for adenosine and 41.8 μM for guanosine) for binding to the AP-DNAs, and the interactions are driven primarily by the enthalpy change, similarly to the case of DNA intercalators. In contrast, pyrimidine nucleosides do not show noticeable binding to the AP-DNAs, thus suggesting that stacking interaction at the AP site plays a key role in the binding of purine nucleosides to the AP-DNAs, as revealed by ITC measurements. Next, to apply an AP-DNA as an aptasensor for adenosine, a competitive assay between adenosine and AP-site-binding fluorescent ligand was performed. The assay employs a fluorescent ligand, riboflavin, that binds to the AP site in a DNA duplex, thereby causing fluorescence quenching. By adding adenosine to the riboflavin/AP-DNA complex, the binding of adenosine to the AP site causes release of riboflavin from the AP site, thereby resulting in restoration of riboflavin fluorescence. AP-DNAs can serve as a new class of aptasensors-a limit of detection of 0.7 μM was obtained for adenosine. In contrast to conventional aptasensors for adenosine, the present method shows high selectivity for adenosine over the other nucleotides (AMP, ADP and ATP). The method does not require covalent labelling of fluorophores, and thus it is cost-effective; finally, the method was successfully demonstrated to be applicable for the detection of adenosine in horse serum.  相似文献   

4.
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.  相似文献   

5.
The structurally unique “fleximer” nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor–ligand recognition and function. Recently they have been shown to have low-to-sub-micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex-bases) has been successfully coupled to both ribose and 2′-deoxyribose sugars by using the N-deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno-expanded tricyclic heterocyclic base, as well as several distal and proximal flex-bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.  相似文献   

6.
Hydrogen bonding among nucleobase pairs serves as an efficient noncovalent interaction for designing supramolecular polymers with desired properties for pressure sensitive adhesives. Michael addition yielded acetyl-protected cytosine/guanine containing acrylic monomers with flexible spacers between the hydrogen bonding units and the acrylic backbone. Free radical polymerization of nucleobase-containing monomers afforded acetyl-protected cytosine/guanine homopolymers and random copolymers with n-butyl acrylate. Nucleobase incorporation significantly affected thermal, thermomechanical, rheological, morphological properties, and adhesive performance of polyacrylates. Guanine/cytosine-containing copolymers each exhibited a single glass transition (Tg) that increased with increasing nucleobase content. Self-association of acetyl cytosine and acetyl guanine units converted low Tg polyacrylates to physically crosslinked networks with mechanical integrity. Solution casting acetyl guanine-containing copolymers with 8 mol% or higher guanine content yielded free-standing films with microphase-separated morphologies. Acetyl cytosine-containing copolymers with 15 mol% or more cytosine formed free-standing films with less microphase-separation compared to the guanine copolymers. 1H NMR titration experiments established a 1:1 binding stoichiometry between acetyl cytosine and acetyl guanine monomers in CDCl3, similar to guanine-cytosine association. However, the acetyl protecting group hindered the formation of triple hydrogen bonding, resulting in double hydrogen bonding between acetyl cytosine and acetyl guanine with an intermediate binding strength comparable to their self-associations. Acetyl guanine-containing copolymers with 3 mol% acetyl guanine exhibited higher peel strength on stainless steel and higher extended service frequency range compared to cytosine-containing copolymers and various pressure sensitive adhesive controls.  相似文献   

7.
N.M.R. Spectroscopical Investigations on the Conformational Behaviour of Some 2′ - and 3′-Halogen-substituted Pyrimidine Nucleosides A series of 2′- and 3′-halogenated pyrimidine nucleosides has been synthesized and investigated by 1H, 13C and 19F n.m.r. spectroscopy. The 1H and 13C chemical shifts for the positions 2′ and 3′ depend linearly but oppositely on the substituent electronegativities XR. The conformational equilibrium N ⇌ S of the nucleosides in solution is determined. An approximately linear correlation between the prefered gauche-gauche interaction of the exocyclic CH2OH groups and the ribose N conformation has been found.  相似文献   

8.
Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.  相似文献   

9.
The enzymatic conversion of isothiazolo[4,3-d]pyrimidine-based adenosine (tzA) and 2-aminoadenosine (tz2-AA) analogues to the corresponding isothiazolo[4,3-d]pyrimidine-based inosine (tzI) and guanosine (tzG) derivatives is evaluated and compared to the conversion of native adenosine to inosine. Henri–Michaelis–Menten analyses provides the foundation for a high-throughput screening assay, and the efficacy of the assay is showcased by fluorescence-based analysis of tzA conversion to tzI in the presence of known and newly synthesized inhibitors.  相似文献   

10.
Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 μM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.  相似文献   

11.
8‐Benzyl‐substituted tetrahydropyrazino[2,1‐f]purinediones were designed as tricyclic xanthine derivatives containing a basic nitrogen atom in the tetrahydropyrazine ring to improve water solubility. A library of 69 derivatives was prepared and evaluated in radioligand binding studies at adenosine receptor (AR) subtypes and for their ability to inhibit monoamine oxidases (MAO). Potent dual‐target‐directed A1/A2A adenosine receptor antagonists were identified. Several compounds showed triple‐target inhibition; one of the best compounds was 8‐(2,4‐dichloro‐5‐fluorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione ( 72 ) (human AR: Ki A1 217 nM , A2A 233 nM ; IC50 MAO‐B: 508 nM ). Dichlorinated compound 36 [8‐(3,4‐dichlorobenzyl)‐1,3‐dimethyl‐6,7,8,9‐tetrahydropyrazino[2,1‐f]purine‐2,4(1H,3H)‐dione] was found to be the best triple‐target drug in rat (Ki A1 351 nM , A2A 322 nm; IC50 MAO‐B: 260 nM ), and may serve as a useful tool for preclinical proof‐of‐principle studies. Compounds that act at multiple targets relevant for symptomatic as well as disease‐modifying treatment of neurodegenerative diseases are expected to show advantages over single‐target therapeutics.  相似文献   

12.
Inhibition of the enzyme catechol O-methyltransferase offers a therapeutic handle to regulate the catabolism of catecholamine neurotransmitters, providing valuable assistance in the treatment of CNS disorders such as Parkinson's disease. A series of ribose-modified bisubstrate inhibitors of COMT featuring 2'-deoxy-, 3'-deoxy-, 2'-aminodeoxy-3'-deoxy-, and 2'-deoxy-3'-aminodeoxyribose-derived central moieties and analogues containing the carbocyclic skeleton of the natural product aristeromycin were synthesized and evaluated to investigate the molecular recognition properties of the ribose binding site in the enzyme. Key synthetic intermediates in the ribose-derived series were obtained by deoxygenative [1,2]-hydride shift rearrangement of adenosine derivatives; highlights in the synthesis of carbocyclic aristeromycin analogues include a diastereoselective cyclopropanation step and nucleobase introduction with a modified Mitsunobu protocol. In vitro biological evaluation and kinetic studies revealed dramatic effects of the ribose modification on binding affinity: 3'-deoxygenation of the ribose gave potent inhibitors (IC50 values in the nanomolar range), which stands in sharp contrast to the remarkable decrease in potency observed for 2'-deoxy derivatives (IC50 values in the micromolar range). Aminodeoxy analogues were only weakly active, whereas the change of the tetrahydrofuran skeleton to a carbocycle unexpectedly led to a complete loss of biological activity. These results confirm that the ribose structural unit of the bisubstrate inhibitors of COMT is a key element of molecular recognition and that modifications thereof are delicate and may lead to surprises.  相似文献   

13.
Flavin adenine dinucleotide (FAD) is an essential redox cofactor in cellular metabolism. The organic synthesis of FAD typically involves coupling flavin mononucleotide (FMN) with adenosine monophosphate, however, existing synthesis routes present limitations such as multiple steps, low yields, and/or difficult-to-obtain starting materials. In this study, we report the synthesis of FAD nucleobase analogues with guanine/cytosine/uracil in place of adenine and deoxyadenosine in place of adenosine using chemical and enzymatic approaches with readily available starting materials, achieved in 1–3 steps with moderate yields (10–57 %). We find that the enzymatic route using Methanocaldococcus jannaschii FMN adenylyltransferase (MjFMNAT) is versatile and can produce these FAD analogues in high yields. Further, we demonstrate that Escherichia coli glutathione reductase is capable of binding and using these analogues as cofactors. Finally, we show that FAD nucleobase analogues can be synthesized inside a cell from cellular substrates FMN and nucleoside triphosphates by the heterologous expression of MjFMNAT. This lays the foundation for their use in studying the molecular role of FAD in cellular metabolism and as biorthogonal reagents in biotechnology and synthetic biology.  相似文献   

14.
The atypical protein kinase haspin is a key player in mitosis by catalysing the phosphorylation of Thr3 in histone H3, and thus ensuring the normal function of the chromosomal passenger complex. Here, we report the development of bisubstrate‐analogue inhibitors targeting haspin. The compounds were constructed by linking 5‐iodotubercidin to the N terminus of histone H3 peptide. The new conjugates show high affinity (sub‐nanomolar KD) towards haspin as well as slow kinetics of association and dissociation (residence time of several hours). This reflects a unique binding mode and translated into improved selectivity. The latter was confirmed in a biochemical binding/displacement assay with a panel of ten protein kinases, in a thermal shift assay with off‐targets of 5‐iodotubercidin (adenosine kinase and the Cdc2‐like kinase family) and in assay with spiked HeLa cell lysate.  相似文献   

15.
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine with the highest efficiency. In our assay system, we could not detect any such transport. Subsequently, Sparreboom suggested that the intracellular metabolization of the nucleosides occurs so fast that the original compounds cannot be detected by LC–MS/MS after inward transport. Our current experiments with 293 cells disprove this hypothesis. Uptake of gemcitabine was easily detected by LC–MS/MS measurements when we expressed the Na+/nucleoside cotransporter CNT3 (SLC28A3). Inward transport was 1280 times faster than the intracellular production of gemcitabine triphosphate. The deoxycytidine kinase inhibitor 2-thio-2′-deoxycytidine markedly blocked the production of gemcitabine triphosphate. There was no concomitant surge in intracellular gemcitabine, however. This does not fit the rapid phosphorylation of gemcitabine. Uptake of cytarabine was very slow, but detection by MS was still possible. When the ETT was expressed and incubated with gemcitabine, there was no increase in intracellular gemcitabine triphosphate. We conclude that the ETT does not transport nucleosides.  相似文献   

16.
Exogenous adenosine and its metabolite inosine exert anti-inflammatory effects in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We analyzed whether these cells are able to synthesize adenosine/inosine and which adenosine receptors (ARs) contribute to anti-inflammatory effects. The functionality of synthesizing enzymes and ARs was tested using agonists/antagonists. Both OA and RA cells expressed CD39 (converts ATP to AMP), CD73 (converts AMP to adenosine), ADA (converts adenosine to inosine), ENT1/2 (adenosine transporters), all AR subtypes (A1, A2A, A2B and A3) and synthesized predominantly adenosine. The CD73 inhibitor AMPCP significantly increased IL-6 and decreased IL-10 in both cell types, while TNF only increased in RA cells. The ADA inhibitor DAA significantly reduced IL-6 and induced IL-10 in both OA and RA cells. The A2AAR agonist CGS 21680 significantly inhibited IL-6 and induced TNF and IL-10 only in RA, while the A2BAR agonist BAY 60-6583 had the same effect in both OA and RA. Taken together, OA and RA synoviocytes express the complete enzymatic machinery to synthesize adenosine/inosine; however, mainly adenosine is responsible for the anti- (IL-6 and IL-10) or pro-inflammatory (TNF) effects mediated by A2A- and A2BAR. Stimulating CD39/CD73 with simultaneous ADA blockage in addition to TNF inhibition might represent a promising therapeutic strategy.  相似文献   

17.
The oxidation chemistry of hypoxanthine nucleosides and nucleotides viz., inosine, 2′-deoxyinosine, inosine-5′-monophosphate and inosine-5′-triphosphate has been studied in the pH range 2.1-11.1 at pyrolytic graphite electrode. In all the four compounds oxidation occurs in 6H+, 6e process at physiological pH (7.2) leading to the formation of allantoin as a major product. The products dimers and tetramers formed in the secondary electrode reactions depend on the nature of sugar molecule (ribose or deoxyribose) present and number of phosphate moieties attached to the sugar moiety. A comparison of redox chemistry and formation of electrooxidised products of inosine and its derivatives has been presented in this paper.  相似文献   

18.
Purine nucleoside phosphorylase (PNP) from Aeromonas hydrophila encoded by the deoD gene has been over‐expressed in Escherichia coli, purified, characterized about its substrate specificity and used for the preparative synthesis of some 6‐substituted purine‐9‐ribosides. Substrate specificity towards natural nucleosides showed that this PNP catalyzes the phosphorolysis of both 6‐oxo‐ and 6‐aminopurine (deoxy)ribonucleosides. A library of nucleoside analogues was synthesized and then submitted to enzymatic phosphorolysis as well. This assay revealed that 1‐, 2‐, 6‐ and 7‐modified nucleosides are accepted as substrates, whereas 8‐substituted nucleosides are not. A few transglycosylation reactions were carried out using 7‐methylguanosine iodide ( 4 ) as a D ‐ribose donor and 6‐substituted purines as acceptor. In particular, following this approach, 2‐amino‐6‐chloropurine‐9‐riboside ( 2c ), 6‐methoxypurine‐9‐riboside ( 2d ) and 2‐amino‐6‐(methylthio)purine‐9‐riboside ( 2g ) were synthesized in very high yield and purity.  相似文献   

19.
N‐4‐Fluorobut‐2‐yn‐1‐yl‐2β‐carbomethoxy‐3β‐phenyltropane (PR04.MZ) has been developed as dopamine transporter (DAT) ligand for molecular imaging. It contains a terminally fluorinated, conformationally constrained nitrogen substituent that is well suited for the introduction of fluorine‐18. The present report describes the pharmacological characterisation of [18F]PR04.MZ. The ligand shows an IC50 value of 2 nM against human DAT, whereas the IC50 value against human serotonin transporter and human noradrenalin transporter are lower (110 nM and 22 nM , respectively). Furthermore, its ex vivo organ distribution, its binding profile in the rat brain and reversibility of binding were examined. A μPET study illuminates a fast kinetic profile and specific binding to rat DAT.  相似文献   

20.
Imprinted uniform microgel spheres were prepared by precipitation polymerization. Acetonitrile was used as the dilute solvent with MAA as the monomer, EDMA as the crosslinker and caffeine as the print molecule. Comparison of caffeine adsorption on molecular imprinted and blank microgel spheres was made. Langmuir model was used to fit the adsorption data. It was found that the caffeine imprinted microgel spheres show specific binding sites to the target molecules. A binding study of caffeine on imprinted microgel spheres was made by Scatchard analysis; the dissociation constants (KD) and the maximum binding capacity were KD= 1.84×10−4mol/L,Q max = 16.98 μmol/g for high affinity binding site and KD=1.33×l0−3 mol/L, Qmax=46.84 μmol/g for lower affinity binding site, respectively This microgel spheres can be useful affinity adsorbents in further applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号