共查询到9条相似文献,搜索用时 0 毫秒
1.
Benjamin M. Nash Alan Ma Gladys Ho Elizabeth Farnsworth Andre E. Minoche Mark J. Cowley Christopher Barnett Janine M. Smith To Ha Loi Karen Wong Luke St Heaps Dale Wright Marcel E. Dinger Bruce Bennetts John R. Grigg Robyn V. Jamieson 《International journal of molecular sciences》2022,23(7)
The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy. In this study, we investigated whole genome sequencing (WGS), focused assays and functional studies to assist with unsolved IRD cases and facilitate integration of these approaches to a broad molecular diagnostic clinical service. The WGS approach identified variants not covered or underinvestigated by targeted capture panel-based clinical testing strategies in six families. This included structural variants, with notable benefit of the WGS approach in repetitive regions demonstrated by a family with a hybrid gene and hemizygous missense variant involving the opsin genes, OPN1LW and OPN1MW. There was also benefit in investigation of the repetitive GC-rich ORF15 region of RPGR. Further molecular investigations were facilitated by focused assays in these regions. Deep intronic variants were identified in IQCB1 and ABCA4, with functional RNA based studies of the IQCB1 variant revealing activation of a cryptic splice acceptor site. While targeted capture panel-based methods are successful in achieving an efficient molecular diagnosis in a proportion of cases, this study highlights the additional benefit and clinical value that may be derived from WGS, focused assays and functional genomics in the highly heterogeneous IRDs. 相似文献
2.
Marta Martín-Snchez Nereida Bravo-Gil María Gonzlez-del Pozo Cristina Mndez-Vidal Elena Fernndez-Surez Enrique Rodríguez-de la Rúa Salud Borrego Guillermo Antiolo 《International journal of molecular sciences》2020,21(24)
The management of unsolved inherited retinal dystrophies (IRD) cases is challenging since no standard pipelines have been established. This study aimed to define a diagnostic algorithm useful for the diagnostic routine and to address unsolved cases. Here, we applied a Next-Generation Sequencing-based workflow, including a first step of panel sequencing (PS) followed by clinical-exome sequencing (CES) and whole-exome sequencing (WES), in 46 IRD patients belonging to 42 families. Twenty-six likely causal variants in retinal genes were found by PS and CES. CES and WES allowed proposing two novel candidate loci (WDFY3 and a X-linked region including CITED1), both abundantly expressed in human retina according to RT-PCR and immunohistochemistry. After comparison studies, PS showed the best quality and cost values, CES and WES involved similar analytical efforts and WES presented the highest diagnostic yield. These results reinforce the relevance of panels as a first step in the diagnostic routine and suggest WES as the next strategy for unsolved cases, reserving CES for the simultaneous study of multiple conditions. Standardizing this algorithm would enhance the efficiency and equity of clinical genetics practice. Furthermore, the identified candidate genes could contribute to increase the diagnostic yield and expand the mutational spectrum in these disorders. 相似文献
3.
Manar Aoun Ilaria Passerini Pietro Chiurazzi Marianthi Karali Irene De Rienzo Giovanna Sartor Vittoria Murro Natalia Filimonova Marco Seri Sandro Banfi 《International journal of molecular sciences》2021,22(13)
Inherited retinal diseases (IRDs) are a heterogeneous group of conditions that include retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EO[S]RD), which differ in severity and age of onset. IRDs are caused by mutations in >250 genes. Variants in the RPE65 gene account for 0.6–6% of RP and 3–16% of LCA/EORD cases. Voretigene neparvovec is a gene therapy approved for the treatment of patients with an autosomal recessive retinal dystrophy due to confirmed biallelic RPE65 variants (RPE65-IRDs). Therefore, the accurate molecular diagnosis of RPE65-IRDs is crucial to identify ‘actionable’ genotypes—i.e., genotypes that may benefit from the treatment—and is an integral part of patient management. To date, hundreds of RPE65 variants have been identified, some of which are classified as pathogenic or likely pathogenic, while the significance of others is yet to be established. In this review, we provide an overview of the genetic diagnostic workup needed to select patients that could be eligible for voretigene neparvovec treatment. Careful clinical characterization of patients by multidisciplinary teams of experts, combined with the availability of next-generation sequencing approaches, can accelerate patients’ access to available therapeutic options. 相似文献
4.
Wei Chiu Ting-Yi Lin Yun-Chia Chang Henkie Isahwan-Ahmad Mulyadi Lai Shen-Che Lin Chun Ma Aliaksandr A. Yarmishyn Shiuan-Chen Lin Kao-Jung Chang Yu-Bai Chou Chih-Chien Hsu Tai-Chi Lin Shih-Jen Chen Yueh Chien Yi-Ping Yang De-Kuang Hwang 《International journal of molecular sciences》2021,22(9)
Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye’s accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs. 相似文献
5.
Suzanne E. de Bruijn Zeinab Fadaie Frans P. M. Cremers Hannie Kremer Susanne Roosing 《International journal of molecular sciences》2021,22(6)
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined “third-generation” sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future. 相似文献
6.
Ludmila Volozonoka Anna Miskova Linda Gailite 《International journal of molecular sciences》2022,23(9)
Successful whole genome amplification (WGA) is a cornerstone of contemporary preimplantation genetic testing (PGT). Choosing the most suitable WGA technique for PGT can be particularly challenging because each WGA technique performs differently in combination with different downstream processing and detection methods. The aim of this review is to provide insight into the performance and drawbacks of DOP-PCR, MDA and MALBAC, as well as the hybrid WGA techniques most widely used in PGT. As the field of PGT is moving towards a wide adaptation of comprehensive massively parallel sequencing (MPS)-based approaches, we especially focus our review on MPS parameters and detection opportunities of WGA-amplified material, i.e., mappability of reads, uniformity of coverage and its influence on copy number variation analysis, and genomic coverage and its influence on single nucleotide variation calling. The ability of MDA-based WGA solutions to better cover the targeted genome and the ability of PCR-based solutions to provide better uniformity of coverage are highlighted. While numerous comprehensive PGT solutions exploiting different WGA types and adjusted bioinformatic pipelines to detect copy number and single nucleotide changes are available, the ones exploiting MDA appear more advantageous. The opportunity to fully analyse the targeted genome is influenced by the MPS parameters themselves rather than the solely chosen WGA. 相似文献
7.
Ionut-Florin Iancu Irene Perea-Romero Gonzalo Núez-Moreno Lorena de la Fuente Raquel Romero Almudena vila-Fernandez María Jos Trujillo-Tiebas Rosa Riveiro-lvarez Berta Almoguera Inmaculada Martín-Mrida Marta Del Pozo-Valero Alejandra Damin-Verde Marta Cortn Carmen Ayuso Pablo Minguez 《International journal of molecular sciences》2022,23(15)
The introduction of NGS in genetic diagnosis has increased the repertoire of variants and genes involved and the amount of genomic information produced. We built an allelic-frequency (AF) database for a heterogeneous cohort of genetic diseases to explore the aggregated genomic information and boost diagnosis in inherited retinal dystrophies (IRD). We retrospectively selected 5683 index-cases with clinical exome sequencing tests available, 1766 with IRD and the rest with diverse genetic diseases. We calculated a subcohort’s IRD-specific AF and compared it with suitable pseudocontrols. For non-solved IRD cases, we prioritized variants with a significant increment of frequencies, with eight variants that may help to explain the phenotype, and 10/11 of uncertain significance that were reclassified as probably pathogenic according to ACMG. Moreover, we developed a method to highlight genes with more frequent pathogenic variants in IRD cases than in pseudocontrols weighted by the increment of benign variants in the same comparison. We identified 18 genes for further studies that provided new insights in five cases. This resource can also help one to calculate the carrier frequency in IRD genes. A cohort-specific AF database assists with variants and genes prioritization and operates as an engine that provides a new hypothesis in non-solved cases, augmenting the diagnosis rate. 相似文献
8.
9.
Tae Hwa Kang Sang Hoon Han Sun Jae Park 《International journal of molecular sciences》2015,16(9):21330-21341
We developed microsatellite markers for genetic structural analyses of Dorcus hopei, a stag beetle species, using next generation sequencing and polymerase chain reaction (PCR)-based genotyping for regional populations. A total of 407,070,351 base pairs of genomic DNA containing >4000 microsatellite loci except AT repeats were sequenced. From 76 loci selected for primer design, 27 were polymorphic. Of these 27 markers, 10 were tested on three regional populations: two Chinese (Shichuan and Guangxi) and one Korean (Wanju). Three markers were excluded due to inconsistent amplification, genotyping errors, and Hardy-Weinberg equilibrium (HWE). By multi-locus genotyping, the allele number, observed heterozygosity and polymorphism information content of seven microsatellite loci were ranged 2‒10, 0.1333‒1.0000, and 0.1228‒0.8509, respectively. In an analysis on the genetic differentiation among regional populations including one Japanese population and one cross-breeding population, the individual colored bar-plots showed that both Chinese populations were closer to each other than to the Far East Asian populations. In Far East Asian populations, Wanju and Nirasaki populations could not be distinguished from each other because the frequency of genetic contents was very similar in some individuals of two populations. Moreover, the cross-breeding population contained all patterns of genetic contents shown in Chinese, Korean, and Japanese populations, compared with the genetic content frequency of each regional population. As a result, we examined whether the cross-breeding population might be a hybrid population, and might contain a possibility of interbreeding with Chinese populations in parental generations. Therefore, these markers will be useful for analyses of genetic diversity in populations, genetic relationships between regional populations, genetic structure analyses, and origin tests. 相似文献