首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of four catalyst with different composition (conventional and new generation CoMo/Al2O3, new composition Pt,Pd/USY, Pt/H-Mordenite) catalysts was investigated for selective desulphurization of different sulphur containing FCC gasolines. The new generation CoMo/Al2O3 and the new composition Pt,Pd/USY were found to have favourable hydrodesulphurisation activity. The reactions of some C5-C6 olefin and aromatic hydrocarbons are discussed under the conditions of deep desulphurisation, highlighting the effects of that on the octane number.  相似文献   

2.
Pyridine and piperidine inhibited the hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DM-DBT) over alumina-supported Pt, Pd, and Pt–Pd catalysts. The Pd catalyst was least sensitive and the Pt–Pd catalysts were most sensitive to the nitrogen-containing compounds. Pyridine was a stronger inhibitor than piperidine at low initial pressure, but the reverse was true at high initial pressure. Hydrogenation of the tetrahydro to the hexahydro and on to the perhydro sulfur-containing intermediate as well as the removal of sulfur from these intermediates was slowed down by piperidine and pyridine. The hydrogenation pathway in the hydrodesulfurization of 4,6-DM-DBT was inhibited much more than the direct desulfurization pathway. The hydrogenation of the desulfurized products 3,3′-dimethylcyclohexylbenzene and 3,3′-dimethylbiphenyl over the Pt–Pd catalysts was suppressed by piperidine and pyridine. Piperidine and pyridine substantially decrease the ability of noble metal particles to convert refractory molecules like 4,6-DM-DBT and diminish the advantage of bimetallic Pt–Pd over monometallic Pt or Pd catalysts.  相似文献   

3.
Nanoscale bimetallic particles (Pd/Fe, Pd/Zn, Pt/Fe, Ni/Fe) have been synthesized in the laboratory for treatment of chlorinated organic pollutants. Specific surface areas of the nanoscale particles are tens of times larger than those of commercially available microscale metal particles. Rapid and complete dechlorination of several chlorinated organic solvents and chlorinated aromatic compounds was achieved by using the nanoscale bimetallic particles. Evidence observed suggests that within the bimetallic complex, one metal (Fe, Zn) serves primarily as electron donor while the other as catalyst (Pd, Pt). Surface-area-normalized reactivity constants are about 100 times higher than those of microscale iron particles. Production of chlorinated byproducts, frequently reported in studies with iron particles, is notably reduced due to the presence of catalyst. The nano-particle technology offers great opportunities for both fundamental research and technological applications in environmental engineering and science.  相似文献   

4.
The aqueous-phase catalytic hydrodechlorination (HDC) of the herbicide clopyralid was studied for the first time. The reaction was carried out on platinum- (Pt), palladium- (Pd) and gold- (Au) based mono- and bimetallic catalysts at 25 °C and atmospheric pressure using a batch reactor. Clopyralid (3,6-dichloropyridine-2-carboxylic acid) is a systemic herbicide from the chemical class of pyridine compounds, which has a high potential to contaminate water sources. The hydrodechlorination of clopyralid (C6H3NO2Cl2) proceeds step-wise to the monochlorinated intermediates 3-chloropyridine-2-carboxylic acid and 6-chloropyridine-2-carboxylic acid (C6H4NO2Cl) and to the dechlorinated intermediate picolinic acid (C6H5NO2). The dechlorination is followed by hydrogenation with formation of the harmless end product pipecolinic acid (C6H10NO2). With different alumina supported mono- and bimetallic catalysts a complete dechlorination and hydrogenation of clopyralid could be achieved. Pd and PdAu catalysts showed the highest activity for the dechlorination steps whereas the Pt and PtAu catalysts are most active in the complete conversion of clopyralid, i.e. combined dechlorination and hydrogenation. Summarizing, HDC is an easily applicable way to remove clopyralid from water.  相似文献   

5.
This work provides a detailed electrochemical impedance study for formic acid electro-oxidation on size-controlled Pd/C nanoparticles, the synthesis of which was done by a simple protocol using ethylene glycol as a reducing agent. By controlling KOH concentration, this strategy provides a synthesis method for Pd nanoparticles with a selective size range of 3.9–7.5 nm. The as-prepared Pd nanoparticles exhibited size-dependent electrochemical property and electrochemical characterizations of four different Pd/C nanocatalysts (3.9, 5.2, 6.1, and 7.5 nm) showed that Pd particle with average size of 6.1 nm has the highest formic acid oxidation activity. Electrochemical impedance-based characterizations of formic acid oxidation on Pd/C suggested that at high potentials the adsorbed oxygen species could block the catalyst surface and inhibit the oxidation reaction, as reflected by the negative polarization resistance. Unlike Pd/C, the intermediate adsorbed CO species (COads) plays a critical role for formic oxidation on Pt/C and thus the impedance spectra of Pd/C and Pt/C appear different potential-dependent patterns in the second quadrant. The issue of CO was investigated by an impedance investigation of Pd/C in a mixture of formic acid containing dissolved CO.  相似文献   

6.
This comparative study characterizes two types of metallic and core–shell bimetallic nanoparticles prepared with our modified polyol method. These nanoparticles consist of Pt and Pt–Pd core–shell nanocatalysts exhibiting polyhedral morphologies. The controlled syntheses of Pt metallic nanoparticles in the 10-nm regime (4–8 nm) and Pt–Pd bimetallic core–shell nanoparticles in the 30-nm regime (15–25 nm) are presented. To realize our ultimate research goals for proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), we thoroughly investigate the dependence of the electrocatalytic properties of the nanoparticles on the structure, size and morphology. Significant differences in the electrocatalysis are also explained in experimental evidences of both Pt and Pt–Pd nanocatalysts. We suggested that the core–shell controlled morphologies and nanostructures of the Pd nanoshell as the Pd atomic monolayers will not only play an important role in producing inexpensive, novel Pt- and Pd-based nanocatalysts but also in designing more efficient Pt- and Pd-based nanocatalysts for practical use in DMFC technology. Our comparative results show that Pt–Pd nanocatalysts with Pd nanoshells exhibited much better electrocatalytic activity and stabilization compared to Pt nanocatalysts. Interestingly, we found that the size effect is not as strong as the nanostructuring effect on the catalytic properties of the researched nanoparticles. A nanostructure effect of the core–shell bimetallic nanoparticles was identified.  相似文献   

7.
An Indian industrial naphtha containing mixture of various hydrocarbons belong to n-paraffins, isoparaffins, naphthenes and aromatics falling in C5 to C9 carbon range has been studied for its octane boosting through the production of isoparaffins over various Pt loaded zeolite catalysts possessing different acidity and porosity properties. Optimum balance of acid and metal functionalities in 0.6 wt.% Pt loaded on BEA zeolite helped in achieving highest increase in research octane number (RON) from 44 to 80, suitable for gasoline applications, through the production of lower isoparaffins (iC4-iC6) along with C7+ isoparaffins.  相似文献   

8.
The sulfur tolerance (i.e., degree of sulfidation) of Pd and Pt in sulfided bimetallic Pd–Pt catalysts (Pd : Pt mole ratio of 4 : 1) supported on USY (ultrastable Y) zeolites (SiO2/Al2O3 = 10.7, 48, and 310) was investigated using an extended X‐ray absorption fine structure (EXAFS) method. The sulfidation of the catalysts was done in a 1000 ppm H2S–2% H2/N2 stream at 573 K for 0.5 h. In the Fourier transforms of Pd K‐edge and Pt LIII‐edge EXAFS spectra, both of the peaks due to metallic Pd and to metallic Pt for the Pd–Pt/USY (SiO2/Al2O3 = 10.7) catalyst remained most after sulfidation. Further, the results of the Fourier transforms confirmed that the sulfur tolerance of both Pd and Pt decreased with increasing SiO2/Al2O3 ratio, suggesting that Pd and Pt become sulfur‐tolerant when Pd–Pt bimetallic particles are supported on highly acidic USY zeolite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Xuguang Li 《Electrochimica acta》2006,51(17):3477-3483
In this work, carbon supported PtxPd1−x (x = 0-1) nanocatalysts were investigated for formic acid oxidation. These catalysts were synthesized by a surfactant-stabilized method with 3-(N,N-dimethyldodecylammonio) propanesulfonate (SB12) as the stabilizer. They show better Pt/Pd dispersion and higher catalytic performance than the corresponding commercial catalysts. Furthermore, the electrocatalytic properties of PtxPd1−x/C were found to depend strongly on the Pt/Pd deposition sequence and on the Pt/Pd atomic ratio. At a lower potential, formic acid oxidation current on co-deposited PtxPd1−x/C catalysts increase with increasing Pd surface concentration. Nanoscale Pd/C is a promising formic acid oxidation catalyst candidate for the direct formic acid fuel cell.  相似文献   

10.
The interactions of H2 and H2S molecules with Pt–Pd bimetallic catalysts were investigated at the molecular level using a DFT (density functional theory) approach to better understand the structures and properties of active sites, and the relations between structural changes and sulfur resistance. It was found that when alloying the Pt catalyst with a small amount of Pd at a particular surface atomic ratio range, both H2 and H2S showed different adsorption properties compared to those on monometallic Pt or Pd catalyst. The adsorptions of both H2 and H2S were enhanced, but the adsorption energy of H2 increased more than that of H2S, indicating that the adsorption of H2S became less favorable compared with H2 on the bimetallic Pt–Pd catalyst surface. The desorption energy of hydrogen from monometallic Pt or Pd, as well as bimetallic Pt–Pd supported on zeolite, were calculated by temperature-programmed desorption (TPD), the values were compared against the DFT results to explain experimentally and theoretically why the bimetallic Pt–Pd catalyst has better sulfur resistance than monometallic Pt catalyst.  相似文献   

11.
A series of catalysts containing noble metals on a super-cross-linked polystyrene (SCP) support with a developed specific surface area (>1000 m2/g) and high thermal stability are prepared and studied to develop an effective catalyst for the low-temperature hydrogenation of aromatic hydrocarbons. A study of Pt- and Pd-containing catalysts based on SCP, carbon supports, and alumina in the hydrogenation of simple (benzene, toluene), branched (n-butylbenzene) and polycyclic (terphenyl) aromatic compounds is conducted. In the hydrogenation of aromatic hydrocarbons, the activity of the catalysts on SCP is comparable to or surpasses analogous catalysts based on Al2O3 and Sibunit in the content of noble metals; it is established that catalysts on SCP have greater selectivity in the hydrogenation of benzene in a benzene-toluene mixture. The electronic state of metals in the Pt(Pd)/SCP catalysts is studied by the IR spectroscopy of adsorbed CO. In testing the catalysts in the hydrogenation of terphenyl, it is found that Pt-containing catalyst on the SCP can operate in reversible hydrogenation-dehydrogenation cycles (terphenyl-tercyclohexane); this is promising for the use of such catalyst systems in creating composite materials for hydrogen storage.  相似文献   

12.
In the microwave and RF plasma catalytic reaction at room temperature, the decomposition of natural gas over Pd–NiO/γ-Al2O3 was carried out. The decomposition of methane is caused by collision by excitation of unstable electronic state. Measuring the flow rate and plasma power can represent kinetic data and mechanism. The conversion of C2 hydrocarbons was increased from 47% to 63.7% in the microwave plasma catalytic reaction within electric field. Comparing the activities of catalysts, Pd–NiO/γ-Al2O3 bimetallic catalyst was more active than Pt–Sn/γ-Al2O3 catalyst because of modifying the surface of catalysts by carbon formation. In RF plasma catalytic reaction, we obtained high C2 yield of 72%, in which the conversion and selectivity of C2 hydrocarbons were related to the applied power and feed rate of natural gas.  相似文献   

13.
Aiming at enhancing H2 production in water gas shift (WGS) for fuel cell application, a small amount of oxygen was added to WGS reaction toward oxygen-enhanced water gas shift (OWGS) on ceria-supported bimetallic Pd–Cu and Pt–Cu catalysts. Both CO conversion and H2 yield were found to increase by the oxygen addition. The remarkable enhancement of H2 production by O2 addition in short contact time was attributed to the enhanced shift reaction, rather than the oxidation of CO on catalyst surface. The strong dependence of H2 production rate on CO concentration in OWGS kinetic study suggested O2 lowers the CO surface coverage. It was proposed that O2 breaks down the domain structure of chemisorbed CO into smaller domains to increase the chance for coreactant (H2O) to participate in the reaction and the heat of exothermic surface reaction helping to enhance WGS kinetics. Pt–Cu and Pd–Cu bimetallic catalysts were found to be superior to monometallic catalysts for both CO conversion and H2 production for OWGS at 300 °C or lower, while the superiority of bimetallic catalysts was not as pronounced in WGS. These catalytic properties were correlated with the structure of the bimetallic catalysts. EXAFS spectra indicated that Cu forms alloys with Pt and with Pd. TPR demonstrated the strong interaction between the two metals causing the reduction temperature of Cu to decrease upon Pd or Pt addition. The transient pulse desorption rate of CO2 from Pd–Cu supported on CeO2 is faster than that of Pd, suggesting the presence of Cu in Pd–Cu facilitate CO2 desorption from Pd catalyst. The oxygen storage capacity (OSC) of CeO2 in the bimetallic catalysts indicates that Cu is much less pyrophoric in the bimetallic catalysts due to lower O2 uptake compared to monometallic Cu. These significant changes in structure and electronic properties of the bimetallic catalysts are the result of highly dispersed Pt or Pd in the Cu nanoparticles.  相似文献   

14.
Properties of Pt0.5M0.5 nanopowders (M = Fe, Co, Ni) of alloys obtained via the decomposition of double complex salts [Pt(NH3)5Cl][Fe(C2O4)3] ? 4H2O, [Pt(NH3)4][Co(C2O4)2(H2O)2] ? 2H2O, and [Pt(NH3)4][Ni(C2O4)2(H2O)2] ? 2H2O, respectively, are studied in the reaction of preferential CO oxidation. It is shown that bimetallic Pt0.5M0.5 catalysts (M = Fe, Co, Ni) are much more active in the low temperature range than Pt nanopowder. The activity of the catalysts decreases in the order Pt0.5M0.5 ≥ Pt0.5M0.5 > Pt0.5M0.5 @ Pt. The higher activity of bimetallic Pt0.5M0.5 catalysts in the reaction of preferential CO oxidation in the low-temperature range under conditions of dense Pt surface coverage by adsorbed CO molecules is most likely caused by the activation of CO on Pt atoms, the activation of O2 on atoms of the second metal (Fe, Co, Ni), and the reaction that occurs at the sites of contact between the atoms of platinum and the atoms of the second metal on the surfaces of the alloy’s nanoparticles. The bimetallic systems investigated in this work can be used to improve catalysts of practically important preferential CO oxidation reaction. These systems have considerable potential in the afterburning reactions of CO and hydrocarbons; hydrogenation reactions; electrochemical reactions; and many others. The means used in the preparation of bimetallic nanopowders based on the decomposition of double complex salts is simple, does not require the use of expensive or complex reagents, and can be easily adapted to produce supported catalysts containing Pt0.5M0.5 metal alloys (M = Fe, Co, Ni).  相似文献   

15.
Differentiation of organic sulfur forms in coal by step-wise oxidation with a mixture of perchloric acid (HClO4) and ferric perchlorate (Fe(ClO4)3) was studied. Various organic sulfur compounds were oxidized with HClO4 solution containing Fe(ClO4)3, and the amounts of sulfate formed during reaction were measured. The compounds can be grouped into three categories according to their reactivities as follows: (1) easily oxidized ones, i.e. disulfides, for which almost all of the sulfur was converted to sulfate after oxidation, (2) less reactive ones including aliphatic sulfides, aliphatic and aromatic thiols (20–30% of sulfur in these compounds was oxidized to sulfate), and (3) relatively stable ones, i.e. thiophenes and aromatic sulfides, from which no sulfate was formed. Samples of Illinois No. 6 and Bevier coals were also reacted with HClO4 solutions containing increasing concentration of Fe(ClO4)3. The organic sulfur in these coals could be differentiated into various groups according to their reactivities.  相似文献   

16.
This paper reports on notable promotion of C2 + hydrocarbons formation from CO2 hydrogenation induced by combining Fe and a small amount of selected transition metals. Al2O3-supported bimetallic Fe–M (M = Co, Ni, Cu, Pd) catalysts as well as the corresponding monometallic catalysts were prepared, and examined for CO2 hydrogenation at 573 K and 1.1 MPa. Among the monometallic catalysts, C2 + hydrocarbons were obtained only with Fe catalyst, while Co and Ni catalysts yielded higher CH4 selectively than other catalysts. The combination of Fe and Cu or Pd led to significant bimetallic promotion of C2 + hydrocarbons formation from CO2 hydrogenation, in addition to Fe–Co formulation discovered in our previous work. CO2 conversion on Ni catalyst nearly reached equilibrium for CO2 methanation which makes this catalyst suitable for making synthetic natural gas. Fe–Ni bimetallic catalyst was also capable of catalyzing CO2 hydrogenation to C2 + hydrocarbons, but with much lower Ni/(Ni+Fe) atomic ratio compared to other bimetallic catalysts. The addition of a small amount of K to these bimetallic catalysts further enhanced CO2 hydrogenation activity to C2 + hydrocarbons. K-promoted Fe–Co and Fe–Cu catalysts showed better performance for synthesizing C2 + hydrocarbons than Fe/K/Al2O3 catalyst which has been known as a promising catalyst so far.  相似文献   

17.
Pt-doped Pd nanoparticle catalysts (Pd n Pt, n is 12, 15 and 19) supported on carbon were synthesized by an ultrasound assisted polyol method. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The electrochemical activity of the electrocatalysts was investigated in terms of formic acid oxidation reaction (FAOR) at low concentration of formic acid in 0.1 M perchloric acid at room temperature. Formic acid oxidation on the Pd n Pt/C commences at lower potential than a commercial Pt/C. Pd19Pt/C catalyst showed the highest catalytic activity in FAOR compared to that of other catalysts. The obtained electrochemical results from voltammograms indicate that Pt-doped Pd catalysts can be a promising candidate for the anode material in direct formic acid fuel cells. The synthesis procedure is not only a very facile route but also a mass producible method for preparing carbon supported alloy nanoparticles.  相似文献   

18.
Extended X-ray absorption fine structure (EXAFS) and X-ray diffraction (XRD) studies on supported bimetallic Pt/Pd diesel oxidation catalyst (Pt:Pd weight ratio 2:1) after various treatments were compared with those of monometallic Pd and Pt catalysts prepared under similar conditions. After calcination and thermal ageing, the coexistence of alloyed bimetallic Pt/Pd particles and of tetragonal PdO has been found in the bimetallic Pt/Pd catalyst. PdO is present in form of crystals at the surface of the Pt/Pd particles or as isolated PdO crystals on the support oxide. Bimetallic Pt/Pd nanoparticles were already formed in the Pt/Pd catalyst after calcination. Hydrogen treatment causes the formation of randomly alloyed Pt/Pd nanoparticles. In the thermally aged catalyst, a strong indication for an enrichment of Pt in the interior of the particle and of Pd at its outer shell was found. In the monometallic catalyst, the Pd is found to be completely oxidised already after calcination and to consist of metallic Pd in zero-valent state exclusively after reductive treatment. Ageing under hydrothermal oxidative atmosphere leads to complete oxidation of the Pd species. After calcinations, the catalytic activity of the Pt/Pd catalyst studied is comparable to those of monometallic Pt catalysts. In contrast to monometallic Pt catalysts, the alloyed system show significant stabilisation against sintering and a much higher activity after the thermal ageing step. This stabilisation of dispersion and the presence of Pt atoms on the surface of the Pt/Pd particles are considered to cause the higher catalytic activity of metallic particles for the oxidation of carbon monoxide and propene after ageing.  相似文献   

19.
Oxidation reactions over a model monolith-supported Pt–Pd/Al2O3 diesel oxidation catalyst were characterized as a function of temperature and position within the catalyst using spatially resolved capillary-inlet mass spectrometry (SpaciMS). The data obtained demonstrate that H2 and CO are oxidized prior to C3H6 and C12H26 and clearly show back-to-front ignition of the reductant species. Significant NO oxidation was observed simultaneous to dodecane light-off, likely related to dodecane partial oxidation products.  相似文献   

20.
Pt, Ir, Pt-Ir and Pt-Ni bimetallic catalysts supported on NaY- and HY-zeolite were examined as a catalyst for producing gasoline from n-decane via simultaneous reforming and cracking. The catalysts were prepared by calcining and reducing metal-ion-exchanged Y-zeolite with O2 and H2 at 300°C., respectively. Thus prepared catalysts were characterized by hydrogen chemisorption and temperature programmed desorption of ammonia. Pt-Ni/NaY and Pt-Ir/NaY bimetallic catalysts offered the improved activity maintenance compared to Pt/NaY monometallic catalyst. The catalysts supported on HY-zeolite showed higher selectivity toward C5–C7 and skeletal isomers of C5–C7- and C8–C10 than those of the catalysts supported on NaY-zeolite, which is a desired characteristic for increasing octane value of gasoline these days. However, deactivation with reaction time was much more pronounced on HY-zeolite-supported catalyst. When the catalyst was prcsulfided with H,S, the stability with time on stream was enhanced and the selectivity was quite different from that of the catalyst before presulfiding. The acidity of Y-zeolite and presulfiding of catalyst greatly influenced the activny, selectivity and stability of Pt, Ir, Pt-Ir and Pt-Ni bimetallic catalysts supported on Y-zeolite in n-decane reforming reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号