首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Simulated microgravity (SMG) induced the changes in cell proliferation and cytoskeleton organization, which plays an important factor in various cellular processes. The inhibition in cell cycle progression has been considered to be one of the main causes of proliferation inhibition in cells under SMG, but their mechanisms are still not fully understood. This study aimed to evaluate the effects of SMG on the proliferative ability and cytoskeleton changes of Chang Liver Cells (CCL-13). CCL-13 cells were induced SMG by 3D clinostat for 72 h, while the control group were treated in normal gravity at the same time. The results showed that SMG reduced CCL-13 cell proliferation by an increase in the number of CCL-13 cells in G0/G1 phase. This cell cycle phase arrest of CCL-13 cells was due to a downregulation of cell cycle-related proteins, such as cyclin A1 and A2, cyclin D1, and cyclin-dependent kinase 6 (Cdk6). SMG-exposed CCL-13 cells also exhibited a downregulation of α-tubulin 3 and β-actin which induced the cytoskeleton reorganization. These results suggested that the inhibited proliferation of SMG-exposed CCL-13 cells could be associate with the attenuation of major cell cycle regulators and main cytoskeletal proteins.  相似文献   

2.
The blood-brain barrier (BBB) is critical to maintaining central nervous system (CNS) homeostasis. However, the effects of microgravity (MG) on the BBB remain unclear. This study aimed to investigate the influence of simulated MG (SMG) on the BBB and explore its potential mechanism using a proteomic approach. Rats were tail-suspended to simulate MG for 21 days. SMG could disrupt the BBB, including increased oxidative stress levels, proinflammatory cytokine levels, and permeability, damaged BBB ultrastructure, and downregulated tight junctions (TJs) and adherens junctions (AJs) protein expression in the rat brain. A total of 554 differentially expressed proteins (DEPs) induced by SMG were determined based on the label-free quantitative proteomic strategy. The bioinformatics analysis suggested that DEPs were mainly enriched in regulating the cell–cell junction and cell–extracellular matrix biological pathways. The inhibited Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (Wave2)/actin-related protein 3 (Arp3) pathway and the decreased ratio of filamentous actin (F-actin) to globular actin contributed to BBB dysfunction induced by SMG. In the human brain microvascular endothelial cell (HBMECs), SMG increased the oxidative stress levels and proinflammatory cytokine levels, promoted apoptosis, and arrested the cell cycle phase. Expression of TJs and AJs proteins were downregulated and the distribution of F-actin was altered in SMG-treated HBMECs. The key role of the Rac1/Wave2/Arp3 pathway in BBB dysfunction was confirmed in HBMECs with a specific Rac1 agonist. This study demonstrated that SMG induced BBB dysfunction and revealed that Rac1/Wave2/Arp3 could be a potential signaling pathway responsible for BBB disruption under SMG. These results might shed a novel light on maintaining astronaut CNS homeostasis during space travel.  相似文献   

3.
Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell–cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.  相似文献   

4.
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.  相似文献   

5.
The effect of weightlessness on gametogenesis and the functional state of female germ cells are still poorly understood. We studied the ovaries of Drosophila melanogaster, the full development cycle of which (from zygote to sexually mature adults) passed under simulated microgravity by a random positioning machine. The rate of cellular respiration was studied by polarography as a parameter reflecting the functional state of mitochondria. The content of cytoskeletal proteins and histones was determined using Western blotting. The relative content of mRNA was determined using qRT-PCR. The results obtained indicated an increase in the rate of cellular respiration under simulated microgravity conditions during the full cycle of gametogenesis in Drosophila melanogaster due to complex I of the respiratory chain. In addition, an increase in the contents of actin cytoskeleton components was observed against the background of an increase in the mRNA content of the cytoskeleton’s encoding genes. Moreover, we observed an increase in the relative content of histone H3 acetylated at Lys9 and Lys27, which may explain the increase in the expression of cytoskeletal genes. In conclusion, the formation of an adaptive pattern of functioning of the Drosophila melanogaster ovaries that developed under simulated microgravity includes structural and functional changes and epigenetic regulation.  相似文献   

6.
Adiponectin and leptin are two abundant adipokines with different properties but both described such as potent factors regulating angiogenesis. AdipoRon is a small-molecule that, binding to AdipoRs receptors, acts as an adiponectin agonist. Here, we investigated the effects of AdipoRon and leptin on viability, migration and tube formation on a human in vitro model, the human umbilical vein endothelial cells (HUVEC) focusing on the expression of the main endothelial angiogenic factors: hypoxia-inducible factor 1-alpha (HIF-1α), C-X-C motif chemokine ligand 1 (CXCL1), vascular endothelial growth factor A (VEGF-A), matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9). Treatments with VEGF-A were used as positive control. Our data revealed that, at 24 h treatment, proliferation of HUVEC endothelial cells was not influenced by AdipoRon or leptin administration; after 48 h longer exposure time, the viability was negatively influenced by AdipoRon while leptin treatment and the combination of AdipoRon+leptin produced no effects. In addition, AdipoRon induced a significant increase in complete tubular structures together with induction of cell migration while, on the contrary, leptin did not induce tube formation and inhibited cell migration; interestingly, the co-treatment with both AdipoRon and leptin determined a significant decrease of the tubular structures and cell migration indicating that leptin antagonizes AdipoRon effects. Finally, we found that the effects induced by AdipoRon administration are accompanied by an increase in the expression of CXCL1, VEGF-A, MMP-2 and MMP-9. In conclusion, our data sustain the active role of adiponectin and leptin in linking adipose tissue with the vascular endothelium encouraging the further deepening of the role of adipokines in new vessel’s formation, to candidate them as therapeutic targets.  相似文献   

7.
Growing evidence has shown that hepatic oval cells, also named liver progenitor cells, play an important role in the process of liver regeneration in various liver diseases. Oval cell proliferation has been reported in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) and chronic liver disease. Studies have found expression of HBV surface and core antigens in oval cells in the livers of patients with HCC, suggesting that HBV infection of oval cells could be a mechanism of human hepatocarcinogenesis. In addition, there is evidence of multiplication of HBV in oval cell culture. However, little research has been performed to explore the role of HBV-encoded proteins in the proliferation of hepatic oval cells. Previously, we successfully transfected the HBV x (HBx) gene, one of the four genes in the HBV genome, into a rat LE/6 oval cell line. In this study, we tested whether or not the transfected HBx gene could affect oval cell proliferation in vitro. Our results show that overexpression of HBx promotes the proliferation of oval cells and increases cyclin D1 expression, assessed at both the mRNA and protein levels. We also found that HBx activated the PI-3K/Akt and MEK/ERK1/2 pathways in HBx-transfected oval cells. Furthermore, the HBx-induced increases in cyclin D1 expression and oval cell proliferation were completely abolished by treatment with either MEK inhibitor PD184352 or PI-3K inhibitor LY294002. These results demonstrated that HBx has the ability to promote oval cell proliferation in vitro, and its stimulatory effects on cell proliferation and expression of cyclin D1 depend on the activation of the MEK/ERK and PI3K/Akt signaling pathways in cultured oval cells.  相似文献   

8.
Senescent cells secrete pro-inflammatory factors, and a hallmark feature of senescence is senescence-associated secretory phenotype (SASP). The aim of this study is to investigate the protein kinase CK2 (CK2) effects on SASP factors expression in cellular senescence and organism aging. Here CK2 down-regulation induced the expression of SASP factors, including interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP) 3, through the activation of nuclear factor-κB (NF-κB) signaling in MCF-7 and HCT116 cells. CK2 down-regulation-mediated SIRT1 inactivation promoted the degradation of inhibitors of NF-κB (IκB) by activating the AKT-IκB kinase (IKK) axis and increased the acetylation of lysine 310 on RelA/p65, an important site for the activity of NF-κB. kin-10 (the ortholog of CK2β) knockdown increased zmp-1, -2, and -3 (the orthologs of MMP) expression in nematodes, but AKT inhibitor triciribine and SIRT activator resveratrol significantly abrogated the increased expression of these genes. Finally, antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760 suppressed CK2α down-regulation, activation of the AKT-IKK-NF-κB axis, RelA/p65 acetylation, and expression of SASP genes in cells treated with lipopolysaccharide. Therefore, this study indicated that CK2 down-regulation induces the expression of SASP factors through NF-κB activation, which is mediated by both activation of the SIRT1-AKT-IKK axis and RelA/p65 acetylation, suggesting that the mixture of the four miRNA inhibitors can be used as anti-inflammatory agents.  相似文献   

9.
Diabetics have an increased risk for heart failure due to cardiac fibroblast functional changes occurring as a result of AGE/RAGE signaling. Advanced glycation end products (AGEs) levels are higher in diabetics and stimulate elevated RAGE (receptor for AGE) signaling. AGE/RAGE signaling can alter the expression of proteins linked to extracellular matrix (ECM) remodeling and oxidative stressors. Our lab has identified a small GTPase, Rap1a, that may overlap the AGE/RAGE signaling pathway. We sought to determine the role Rap1a plays in mediating AGE/RAGE changes and to assess the impact of isolated collagen on further altering these changes. Primary cardiac fibroblasts from non-diabetic and diabetic mice with and without RAGE expression and from mice lacking Rap1a were cultured on tail collagen extracted from non-diabetic or diabetic mice, and in addition, cells were treated with Rap1a activator, EPAC. Protein analyses were performed for changes in RAGE-associated signaling proteins (RAGE, PKC-ζ, ERK1/2) and downstream RAGE signaling outcomes (α-SMA, NF-κB, SOD-2). Increased levels of endogenous AGEs within the diabetic collagen and increased Rap1a activity promoted myofibroblast transition and oxidative stress, suggesting Rap1a activity elevated the impact of AGEs in the diabetic ECM to stimulate myofibroblast transition and oxidative stress.  相似文献   

10.
Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.  相似文献   

11.
Low-grade chronic inflammation plays a pivotal role in the pathogenesis of insulin resistance (IR), and skeletal muscle has a central role in this condition. NLRP3 inflammasome activation pathways promote low-grade chronic inflammation in several tissues. However, a direct link between IR and NLRP3 inflammasome activation in skeletal muscle has not been reported. Here, we evaluated the NLRP3 inflammasome components and their role in GLUT4 translocation impairment in skeletal muscle during IR. Male C57BL/6J mice were fed with a normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. The protein levels of NLRP3, ASC, caspase-1, gasdermin-D (GSDMD), and interleukin (IL)-1β were measured in both homogenized and isolated fibers from the flexor digitorum brevis (FDB) or soleus muscle. GLUT4 translocation was determined through GLUT4myc-eGFP electroporation of the FBD muscle. Our results, obtained using immunofluorescence, showed that adult skeletal muscle expresses the inflammasome components. In the FDB and soleus muscles, homogenates from HFD-fed mice, we found increased protein levels of NLRP3 and ASC, higher activation of caspase-1, and elevated IL-1β in its mature form, compared to NCD-fed mice. Moreover, GSDMD, a protein that mediates IL-1β secretion, was found to be increased in HFD-fed-mice muscles. Interestingly, MCC950, a specific pharmacological NLRP3 inflammasome inhibitor, promoted GLUT4 translocation in fibers isolated from the FDB muscle of NCD- and HFD-fed mice. In conclusion, we found increased NLRP3 inflammasome components in adult skeletal muscle of obese insulin-resistant animals, which might contribute to the low-grade chronic metabolic inflammation of skeletal muscle and IR development.  相似文献   

12.
Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.  相似文献   

13.
The retrograde flow of endometrial tissues deposited into the peritoneal cavity occurs in women during menstruation. Classically (M1) or alternatively (M2) activated macrophages partake in the removal of regurgitated menstrual tissue. The failure of macrophage egress from the peritoneal cavity through the mesothelium leads to chronic inflammation in endometriosis. To study the migration differences of macrophage phenotypes across mesothelial cells, an in vitro model of macrophage egress across a peritoneal mesothelial cell monolayer membrane was developed. M1 macrophages were more sessile, emigrating 2.9-fold less than M2 macrophages. The M1 macrophages displayed a pro-inflammatory cytokine signature, including IL-1α, IL-1β, TNF-α, TNF-β, and IL-12p70. Mass spectrometry sphingolipidomics revealed decreased levels of ceramide-1-phosphate (C1P), an inducer of migration in M1 macrophages, which correlated with its poor migration behavior. C1P is generated by ceramide kinase (CERK) from ceramide, and blocking C1P synthesis via the action of NVP231, a specific CERK chemical inhibitor, prohibited the emigration of M1 and M2 macrophages up to 6.7-fold. Incubation with exogenously added C1P rescued this effect. These results suggest that M1 macrophages are less mobile and have higher retention in the peritoneum due to lower C1P levels, which contributes to an altered peritoneal environment in endometriosis by generating a predominant pro-inflammatory cytokine environment.  相似文献   

14.
Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.  相似文献   

15.
16.
Corosolic acid (CA; 2α-hydroxyursolic acid) is a natural pentacyclic triterpenoid with antioxidant, antitumour and antimetastatic activities against various tumour cells during tumourigenesis. However, CA’s antitumour effect and functional roles on human oral squamous cell carcinoma (OSCC) cells are utterly unknown. In this study, our results demonstrated that CA significantly exerted an inhibitory effect on matrix metalloproteinase (MMP)1 expression, cell migration and invasion without influencing cell growth or the cell cycle of human OSCC cells. The critical role of MMP1 was confirmed using the GEPIA database and showed that patients have a high expression of MMP1 and have a shorter overall survival rate, confirmed on the Kaplan–Meier curve assay. In the synergistic inhibitory analysis, CA and siMMP1 co-treatment showed a synergically inhibitory influence on MMP1 expression and invasion of human OSCC cells. The ERK1/2 pathway plays an essential role in mediating tumour progression. We found that CA significantly inhibits the phosphorylation of ERK1/2 dose-dependently. The ERK1/2 pathway played an essential role in the CA-mediated downregulation of MMP1 expression and in invasive motility in human OSCC cells. These findings first demonstrated the inhibitory effects of CA on OSCC cells’ progression through inhibition of the ERK1/2–MMP1 axis. Therefore, CA might represent a novel strategy for treating OSCC.  相似文献   

17.
BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC). However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK) and human gingival fibroblasts (HGF). Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients.  相似文献   

18.
It has been suggested that natural killer (NK) cell activity and Th1 immunity may be involved in the pathogenesis of preeclampsia. This study aimed to investigate the immunophenotypes of NK cells and type 1/type 2 immunity in both decidua and maternal peripheral blood between normal (n=11) and preeclamptic pregnant women (n=20) by flow cytometry. The results showed that no significant difference was observed between patients and controls by detecting CD56+CD69+ and CD56+CD94+ NK cells in both peripheral blood and decidua. Moreover, in preeclamptic patients, decreased percentages of Tc2 and Th2 cells and the increased ratios of Tc1/Tc2 were determined in both decidua and maternal peripheral blood. In addition, the ratio of Th1/Th2 in peripheral blood also increased. There was no significant difference of immunophenotypes of uNK cells between preeclampsia and normal pregnancy. Local decidua and systematic immunity did not correlate with each other. These results suggest that the type 1/type 2 immunity shifted to type 1 immunity including Th1 and Tc1 cells may contribute to the patho-genesis of preeclampsia.  相似文献   

19.
20.
Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号